

sa.engine Java Interfaces

Stream Analyze Sweden AB

Sweden

Version 2.2

2020-09-08
sa_JavaAPI_2.2.pdf

This document describes the external interfaces between sa.engine and the

programming language Java. There are mainly two ways to interface

sa.engine with Java programs: In the client interface Java programs call

sa.engine, while in the plugin interface foreign OSQL functions are

implemented as Java methods. The combination is also possible where

foreign functions in Java call sa.engine back through the client interface.

Table of contents

1. Introduction ... 3
2. The client interface ... 3

2.1. Connections... 4
2.2. The query interface ... 5
2.3. The function interface ... 6

2.4. Mapping over infinite streams .. 6
3. Implementing foreign Java functions.. 7

3.1. A Hello World foreign function .. 7
3.2. Foreign function with arguments and result ... 8
3.3. Foreign function with several results .. 9

3.4. Foreign function returning a vector .. 10

3.5. Foreign function taking vectors as arguments .. 10

3.6. Foreign function generating a bag .. 11

3.7. Foreign aggregate function ... 11
3.8. Aggregation over vectors .. 12
3.9. Aggregation over finite streams .. 12

3.10. Foreign function returning a record .. 12
3.11. Foreign function accessing a record ... 13
3.12. Foreign function returning an infinite stream ... 13

3.13. Foreign stream transformation function .. 14
3.14. Exception handling ... 14

3.15. Multi-directional foreign functions ... 15
4. Data objects ... 16

4.1. Tuples .. 16
4.1.1. Tuple creation ... 16

4.1.2. Integer elements .. 17
4.1.3. Floating point elements ... 17
4.1.4. String elements.. 17

4.1.5. Data type of element ... 17

4.2. Vectors .. 18
4.3. Records ... 18
4.4. Object proxies ... 18

1. Introduction

There are two main kinds of external interfaces, the client and the plugin interfaces:

• With the client interface a program in Java calls sa.engine. The client interface allows

OSQL queries and function calls to be shipped from application programs to remote

sa.engine servers or to an embedded sa.engine system running in the same process as the

application.

• With the plugin interface OSQL functions are implemented as public methods in Java.

The foreign Java functions are executed in the same process as sa.engine. The client

interface can be used also in foreign Java function implementations.

The result of an OSQL query or function call is an object stream, which is a possibly infinite

stream of objects. The client interface provides primitives to map over the elements in such

object streams. Analogously the plugin interface provides API primitives to produce object

streams.

This documentation describes the sa.engine API for Java 8 where the new "lambda-functions"

enable a very elegant object stream interface where lambda functions in Java are used as callback

functions. It is possible to use sa.engine also for older Java versions by using lower level

interface primitives not described here.

This documentation introduces the Java API of sa.engine through a number of example programs

whose source codes are in the folders sa.engine/demo/*/Java of an installed sa.engine

system. In that folder you will find a number of examples for how to use the Java API. You are

assumed to be familiar with OSQL.

To compile an example Java program using the Java API of sa.engine you must make sure that

your CLASSPATH includes the file sa.engine/bin/sa_Java.jar that implements the

API. If sa.engine is installed and CLASSPATH set correctly you can compile the Java program

Hello.java in folder sa.engine/demo/Hello/Java on your PC with:

javac Hello.java

2. The client interface

With the client interface there are two ways to call sa.engine from Java:

• In the query interface strings containing OSQL statements are sent to sa.engine for

dynamic evaluation. The result from a query is an object stream. The forEach interface

in Java 8 provides a powerful mechanism where the system iterates over object streams

and applies user lambda-functions (callback methods) for each element in the received

object stream. The embedded query interface is relatively slow since the OSQL

statements must be parsed and compiled at run time.

• In the function interface sa.engine functions are directly called from Java, without the

overhead of dynamically parsing and executing OSQL statements. The result of a

function call is an object stream. The function interface is significantly faster than the

query interface. It is therefore recommended to always define sa.engine functions stored

in the local database for the various sa.engine operations performed by the application

and then use the function interface to invoke them directly.

When calling sa.engine from application programs, the application usually often runs as a client

to an sa.engine server (SAS) running on some other computer. This is called the remote

connection. With the remote connection several applications running in different locations can

remotely access the same SAS concurrently. The Java applications and the SAS run as separate

programs so that the server will survive client crashes and vice versa.

It is also possible to run the system as an embedded sa.engine system in the same process and

memory address space as the client application. Several client threads can thereby concurrently

access the embedded sa.engine thread. This is called the local connection.

2.1. Connections

A Java object of class Connection represents connections to an sa.engine server. The

connection is established when the connection object is created using the constructors:

new Connection(String p)

new Connection()

The constructor Connection(p) will establish a remote connection to an sa.engine peer

named p that can be i) an sa.engine client running on an edge device, ii) an sa.engine stream

server (SAS) coordinating communication with edge devices, or iii) a nameserver, which is a

SAS that keeps track of all other peers in a federation of sa.engine peers. The format of the string

p is one of:
peer

peer@host

peer@host:portno

If just a peer name is specified the peer must be a local peer known by the nameserver running

on the same computer as the client. The local nameserver can beo reached using the peer name

nameserver. If peer@host is specified a connection is established to a peer running on the

name server of the specified host. Specifying peer@localhost is equivalent to just peer.

The nameserver by default listens on port 35021; the format peer@host:portno is used

when the nameserver on that host uses some other port.

When the connection constructor has no argument, a local connection is established to an

embedded sa.engine system running in the same main memory process as the caller.

2.2. The query interface

In the query interface, strings being OSQL statements are sent to sa.engine stream servers or

edges for execution. The following is a Java application that prints the five first natural number

in file sa.engine/demo/clent/Java/QueryRange.java:

import com.sa.callin.*;

public class QueryRange {

 public static void main(String argv[]) {

 Connection c = new Connection("p");

 ObjectStream s = c.query("range(1,5)");

 s.mapAll(e -> System.out.println(e.getIntElem(0)));

 }

}

Example 1. Mapping over the result from a query

The constructor Connection("p") opens a connection c to peer named "p" managed by the

local nameserver running on the same host as the application. The peer "p" can also be an edge

device managed by the nameserver or a some SAS coordinated by the nameserver that manages

the edge device.

The method call c.query(q) sends a query string q to be executed by the peer to which c

connects. The query will thereby be compiled and optimized by sa.engine and then an object

stream s of class ObjectStream is constructed by sa.engine to represent the result stream of

the query. The application can utilize the lambda experssions of Java 8

(https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html) to map over

object streams using the mapAll method. In the example a lambda expression is appplied on all

elements e in the result object stream from the OSQL query range(1,5).

An object stream element e is a tuple of one or several objects. In the example each e is a tuple

containing a single integer. To access the object in position pos of a tuple e is the method

e.GetIntElem(pos) is called. The tuple positions are enumerated from 0 and up.

The example shows how execute a single OSQL query where the system will block the current

thread to wait for tuples to arrive on the object stream. Several OSQL queries can be executed in

parallel in separate Java threads.

A common case is that one or several OSQL statements are sent to the server for synchronous

evaluation and then immediately waiting for them to finish. This is made by applying the method

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

run() on the result stream from method query. For example:

Tuple res = c.query("create function add1(Number x) -> Number as x + 1").run();

Here the method run() iterates over the entire result stream to execute the create statement.

It returns the last element of the object stream when the query is completed. In the example the

object stream contains only the object representing the function add1, so it will be returned

from run(). The method run() cannot be used for queries returning infinite streams (Sec.

2.4), as that would cause an infinite loop.

2.3. The function interface

The time to dynamically compile and optimize a query by sa.engine can be rather long, so a

better way is to directly call OSQL functions through the function interface. The following Java

code in file sa.engine/demo/client/Java/CallRange.java calls the OSQL

function range(1,5):

import com.sa.callin.*;

public class CallRange {

 public static void main(String argv[]) {

 Connection c = new Connection("p");

 Tuple argl = Tuple.make(1, 5);

 ObjectStream s = c.call("range", argl);

 s.mapAll (e -> System.out.println(e.getIntElem(0)));

 }

}

Example 2. Calling a function and mapping over the result

Most of the code is the same as in QueryRange.java in Sec. 2.2. The only difference is that

an argument tuple (1,5) bound to argl is first constructed by calling the variadic Java method

Tuple.make(1,5) (Sec 4.1.1) and that the function named "range" with arguments in

tuple argl is called by method c.call("range", argl). The argument tuple argl

contains arguments of OSQL function calls from Java. An object stream is returned by method

call c.call() on which a lambda expression to print all result elements e is applied.

2.4. Mapping over infinite streams

The results of queries and function calls returning streams are also represented as object streams.

There is no upper limit on how many elements can be retrieved from such an object stream. The

system is able to handle object streams s containing indefinite numbers of elements, in which

case the mapping will never terminate. In such cases the mapping will have to be done with the

method map where the lambda expression returns a Boolean continuation flag that terminate the

mapping when false. Alternatively, the mapping can be terminated by throwing an exception.

For example, the following query in

sa.engine/demo/client/Java/CallHeartbeat.java prints the numbers 0.0 and

0.1 by iterating over the two first elements of the indefinite stream returned by

heartbeat(0.1):

import com.sa.callin.*;

public class CallHeartbeat {

 public static void main(String argv[]) {

 Connection c = new Connection("p");

 Tuple argl = Tuple.make(0.01);

 ObjectStream s = c.call("heartbeat", argl);

 int[] cnt = {1};

 s.map(e -> {

 System.out.println(e.getDoubleElem(0));

 return cnt[0]++ < 2;

 });

 }

}

Example 3. Example on how to stop an object stream

When the lambda expression returns the continuation flag true while the mapping continues,

and false when it is terminated. In the example it is terminated after printing the two first

elements e of the object stream. Notice that lambda expressions in Java 8 require the counter

cnt to be called by reference by defining it as an array.

3. Implementing foreign Java functions
Foreign functions in Java are defined as methods in public classes in a Java class files that are

dynamically loaded into sa.engine. This chapter describes through examples the different kinds of

foreign functions definable in Java.

3.1. A Hello World foreign function

As a first very simple example, we implement a foreign Java function hello() -> Charstring that

returns the string "Hello World". The file sa.engine/demo/Hello/Java/Hello.java

has the following contents:

import com.sa.callin.*;

import com.sa.callout.*;

public class Hello {

 public void helloF(CallContext cxt, Tuple tpl) {

 tpl.setElem(0,"Hello World");

 cxt.emit(tpl);

 }

}
Example 4. Simplest foreign function in Java returning the string "Hello World"

The parameter cxt is a context object of class CallContext for managing the call by sa.engine,

and tpl is a parameter tuple of class Tuple representing both the arguments (inputs) and results

(outputs) of the foreign function call.

In the example the function binds the unbound parameter position 0 of the parameter tuple tpl

to the desired result string "Hello World" by calling the method tpl.setElem(0,

"Hello World"). Positions of tuples are enumerated 0 and up; in this case there is no

argument so the result is in position 0.

When the result has been filled in using tpl.setElem() the entire tuple tpl is sent to

sa.engine using the method cxt.emit(tpl).

When Hello.java is compiled with the command
make compile

you can start the console REPL with the shell command sa.engine and there register the

external Java function implementation by executing the OSQL statement:
create function hello() -> Charstring

 as foreign 'JAVA:Hello/helloF';

The function can then be called immediately:
hello();

You will notice that, if needed, sa.engine first dynamically loads a Java Virtual Machine (JVM) to

execute the call. The call will fail if no JVM is found. If it fails to load the JVM, make sure that a

suitable JVM can be reached from the folder where the console REPL was started. If the JVM

cannot be found, set the variable JAVA_HOME properly.

The OSQL script in sa.engine/demo/Hello/validate.osql validates that Hello World

works correctly. It is recommended that you make such test scripts for all new foreign functions.

You can run the test script with
make test

The foreign Java function definitions are permanently saved in the database image when saved on

disk so that they will be reloaded when sa.engine is started again with the saved image.

Once Hello World works you know that you have set up the environment for compiling and

plugging in Java code to sa.engine correctly. You are ready to define any foreign Java function.

3.2. Foreign function with arguments and result

The arguments of a foreign OSQL function in Java are stored in the parameter tuple as well as

the results. For example, the function myconcat(Charstring x, Charstring y) -> Charstring

concatenates strings x and y. It has the following implementation as method myconcatBBF in

sa.engine/demo/Basic/Java/Simple.c:

public void myconcatBBF (CallContext cxt, Tuple tpl) {

 String x = tpl.getStringElem(0); // Pick up 1st argument x

 String y = tpl.getStringElem(1); // Pick up 2nd argument x

 tpl.setElem(2, x+y);

 cxt.emit(tpl);

 }
Example 5. Foreign Java function implementation taking two parameters

In this case the arguments x and y of myconcat(x,y) are in positions zero and one of the

parameter tuple tpl and the computed result is bound in position two.

Compile the Java code in folder sa.engine/demo/Basic/Java/ with
make compile

The OSQL code of myconcat() in file

sa.engine/demo/Basic/Java/definitions.osql is:
create function myconcat(Charstring x, Charstring y) -> Charstring

 as foreign 'JAVA:Simple/myconcatBBF';

The OSQL script sa.engine/demo/Basic/validate.osql includes validation of

myconcat(). The code in the Java folder can be tested with:
make test

3.3. Foreign function with several results

Foreign functions can also return more than a single value as a tuple. For example, the foreign

function sqrt2(Number x)->(Number pos,Number neg) returns both the positive and negative

square roots of number x. It is implemented as method sqrt2BFF in file

sa.engine/demo/Basic/Java/Simple.java:

public void sqrt2BFF(CallContext cxt, Tuple tpl) {

 double root = Math.sqrt(tpl.getDoubleElem(0));

 tpl.setElem(1, root);

 tpl.setElem(2, -root);

 cxt.emit(tpl);

 }
Example 6. Foreign Java function implementation returning tuple of several values

In this case the foreign function has a single input argument in position 0 of tuple tpl. The

method call tpl.getDoubleElem(0)converts the input argument into a floating point

number. An exception is raised if the argument is not a number. The method tpl.setElem is

called twice to set the two result elements in the parameter tuple.

The OSQL code of sqrt2() is:
create function sqrt2(Number x) -> (Number neg, Number pos)

 as foreign 'JAVA:Simple/sqrt2BFF';

3.4. Foreign function returning a vector

The OSQL type Vector is represented in Java as arrays. The function vsqrt2(Number x) ->

Vector of Number returns the negative and positive square root of number x. It is implemented as

method vsqrt2BF in file sa.engine/demo/Basic/Java/Simple.java:

 public void vsqrt2BF (CallContext cxt, Tuple tpl) {

 double x = tpl.getDoubleElem(0); // Pick up argument x

 if(x >= 0) {

 double root = Math.sqrt(x);

 double[] roots = {-root, root};

 tpl.setElem(1, roots);

 cxt.emit(tpl);

 }
Example 7. Foreign function method returning a vector

In this case the foreign function has a single input argument in position 0 of the parameter tuple

tpl. The method call tpl.getDoubleElem(0)converts the input argument into a floating

point number. An exception is raised if the argument is not a number. The method

tpl.setElem will convert the Java array root to an OSQL object of type Vector.

The OSQL definition of vsqrt2() is:
create function vsqrt2(Number x) -> Vector of Number

 as foreign 'JAVA:Simple/vsqrt2BF';

3.5. Foreign function taking vectors as arguments

As an example of a function taking vectors as arguments, the function dotprod(Vector v, Vector

w) ->Number returns the Cartesian product of vectors v and w. It is implemented as method

dotprodBBF in file sa.engine/demo/Basic/Java/Collections.java as:

 public void dotprodBBF(CallContext cxt, Tuple tpl)

 {

 double[] v = tpl.getDoubleArrayElem(0); // First argument

 double[] w = tpl.getDoubleArrayElem(1); // Second argument

 double prod = 0;

 if (v.length! = w.length)

 throw new sa_Exception("Array index out of bounds");

 for(int i=0; i < v.length; i++) {

 prod = prod + v[i]*w[i];

 }

 tpl.setElem(2,prod);

 cxt.emit(tpl);

 }

 }
Example 8. Foreign Java function implementation taking vectors as arguments

The method call tpl.getDoubleArrayElem(pos) returns the element at position pos of

tuple tpl as a Java array.

The expression throw new sa_Exception(msg) raises an sa.engine exception.

The OSQL definition of dotprod() is:
create function dotprod(Vector v, Vector w) -> Number

 as foreign 'JAVA:Collections/dotprodBBF';

3.6. Foreign function generating a bag

Foreign functions can return bags of values. For example, the foreign function natural(Number

n)->Bag of Number returns a bag of the integers from m to n. It is implemented as method

naturalBBF in file sa.engine/demo/Basic/Java/Collections.java:

 public void naturalBBF(CallContext cxt, Tuple tpl) {

 int n = tpl.getIntElem(0);

 for(int i=1; i<=n; i++) {

 tpl.setElem(1, i);

 cxt.emit(tpl);

 }

 }
Example 9. Foreign Java function implementation returning a bag of numbers from m to n

The method call tpl.getIntElem(0) converts the input argument in position 0 of tpl to an

integer. Notice that cxt.emit(tpl) is called several times to iteratively emit each element of

the result bag of numbers.

The OSQL definition of natural() is:
create function natural(Number m, Number n) -> Bag of Number

 as foreign 'JAVA:Collections/naturalBBF';

3.7. Foreign aggregate function

To implement foreign aggregate functions in Java that iterate over collections (bags, streams or

vectors) the method CallContext.map is used. For example, the function sqsum(Bag of

Number b)->Number will sum up the square all numbers in bag b. It is implemented as method

sqsumBF in file sa.engine/demo/Aggregation/Java/Aggregation.java:

 public void sqsumBF(CallContext cxt, Tuple tpl) {

 double[] sum = {0};

 cxt.mapAll(tpl.getOidElem(0), e -> {

 double x = e.getDoubleElem(0);

 sum[0] += x*x;

 });

 tpl.setElem(1, sum[0]);

 cxt.emit(tpl);

 }
Example 10. Implementation of an aggregate function jsum over a bag of numbers

If you call sqsum(range(1,10)) from the console REPL you will get the result 55.

The method CallContext.mapAll(coll, l) takes as arguments a collection coll to

map over and a lambda expression l. The expression l is applied on each element e in the result

object stream.

The OSQL definition of sqsum() is:
create function sqsum(Bag b) -> Number

 as foreign 'JAVA:Aggregation/sqsumBF';

3.8. Aggregation over vectors

A foreign aggregate function implementation over bags can also be used for aggregating over

vectors. For example, the method sqsumBF above can also be used for computing the sum of

the square of numbers in vector by defining the function:
create function sqsum(Vector v) -> Number

 as foreign 'JAVA:Aggregation/sqsumBF';

3.9. Aggregation over finite streams

 A foreign aggregate function implementation over bags can also be used for aggregating over

finite streams. For example, the method sqsumBF above can also be used for computing the

sum of the square of numbers in vector by defining the function:
create function sqsum(Stream v) -> Number

 as foreign 'JAVA:Aggregation/sqsumBF';

3.10. Foreign function returning a record

Records in sa.engine are represented as class Record in Java (Sec. 4.3). For example, the

function rsqrt2(Number x)->Record returns the square root of x as a record {"neg": -r

"pos": r}. It is implemented as method rsqrt2BF in file

sa.engine/demo/Basic/Java/Collections.java:

 public void rsqrt2BF(CallContext cxt, Tuple tpl) {

 double x = tpl.getDoubleElem(0);

 if(x >= 0) {

 double root = Math.sqrt(x);

 // Construct record {"neg":-root,"pos":root}:

 Record r = new Record();

 r.put("neg", -root);

 r.put("pos", root);

 tpl.setElem(1,r);

 cxt.emit(tpl); // Emit record r

 }
Example 11. Foreign function returning a record.

The method call r.put(a,v) sets the value for attribute a in in record r to v.

The OSQL definition of rsqrt2() is:
create function rsqrt2(Number x) -> Record

 as foreign 'JAVA:Collections/rsqrt2BF';

3.11. Foreign function accessing a record

The function getnum(Record r,Charstring a)->Number returns attribute a in record r as a

number. It is implemented as method getnumBBF in file

sa.engine/demo/Basic/Java/Collections.java:

 public void getnumBBF(CallContext cxt, Tuple tpl) {

 Record r = tpl.getRecordElem(0);

 String field = tpl.getStringElem(1);

 Tuple val = r.get(field);

 if(val == null) return; // Returns nil

 double x = val.getDoubleElem(0);

 tpl.setElem(2, x);

 cxt.emit(tpl);

 }
Example 12. Foreign function accessing a record.

The OSQL definition of getnum() is:
create function getnum(Record r, Charstring field) -> Number

 as foreign 'JAVA:Collections/getnumBBF';

3.12. Foreign function returning an infinite stream

The same mechanism as for bags is used for returning (possibly infinite) streams of values. For

example, the function natural_numbers()->Stream of Number returns an infinite stream of the

natural numbers (integers from one to infinity). It is implemented as method

natural_numbersF in file sa.engine/demo/Streams/Java/Streams.java:

 public void natural_numbersF(CallContext cxt, Tuple tpl) {

 int i=0;

 while(true) {

 tpl.setElem(0, i++);

 cxt.emit(tpl);

 }

 }
Example 13. Foreign Java function implementation returning an infinite stream of all natural numbers

If you call natural_numbers() from the console REPL an infinite stream of number is

returned and the system will print natural numbers until you interrupt it with CTRL-C. The call

section(natural_numbers(), 10, 20) will return a finite stream.

3.13. Foreign stream transformation function

A stream transformation function takes a stream as argument and produces a new transformed

stream as result. For example, the function power_stream(Stream s,Number n) -> Stream of

Number generates a stream of xn of the numbers x in stream s. It has the following

implementation in sa.engine/demo/Streams/Java/Streams.java:

 public void power_streamBBF(CallContext cxt, Tuple tpl) {

 double exp = tpl.getDoubleElem(1);

 cxt.mapAll(tpl.getOidElem(0), e -> {

 double x = e.getDoubleElem(0)

 tpl.setElem(2,Math.pow(x, exp));

 cxt.emit(tpl);

 });

 }

Example 14. Implementation of a stream transformation function

The important thing here is that emit() is called for each stream element in the lambda

expression.

The OSQL definition of power_stream() is:
create function power_stream(Stream of Number s, Number n) -> Stream of Number

 as foreign 'JAVA:Streams/power_streamBBF';

3.14. Exception handling

sa.engine can raise two kinds of runtime Java exceptions: NoMoreData and sa_Exception.

The user need not declare or catch these runtime exceptions, but sometimes a try … finally

... construct is needed in order to guarantee that resources allocated by the foreign function are

always freed. The error message for an sa.engine exception can be obtained by calling the Java

system exception method getMessage().

The exception NoMoreData is raised when an application indicates that no more data is

needed.

The exception sa_Exception is raised by the system when some error is detected. To raise a

new exception with a new error message, sa_Exception has a constructor that takes an error

string as parameter.

The cause of an sa_Exception can be investigated through the following sa_Exception

attributes:

errno: Attribute holding the sa.engine error number. Only some of the system messages have

error numbers. If errno==-1 it indicates that the exception did not have a specific error

number.

errstr: Attribute holding the error message string.

errform: Attribute holding the object causing the error.

3.15. Multi-directional foreign functions

Foreign OSQL functions can be made invertible. For example, assume a foreign square root

function:
create function sqroot(Number x) -> Bag of (Number r)

 as foreign 'JAVA:Sqrt/sqrootBF';

Its definition if file Sqrt.java is:
import com.sa.callin.*;

import com.sa.callout.*;

public class Sqrt {

 public void sqrootBF(CallContext cxt, Tuple tpl) {

 double x = tpl.getDoubleElem(0);

 if(x==0) {

 tpl.setElem(1, 0);

 cxt.emit(tpl);

 }

 else if(x > 0) {

 double root = Math.sqrt(x);

 tpl.setElem(1, root);

 cxt.emit(tpl);

 tpl.setElem(1, -root);

 cxt.emit(tpl);

 }

 }

}
Example 15. Implementation of the foreign function sqroot(number x) -> bag of (Number r)

The bag of numbers 2.0 and -2.0 will be returned by the query sqroot(4).

If sqroot were invertible we could also make a query calling its inverse:
select x from Number x where 2 in sqroot(x); /* Result is 4.0 */

Since the definition above is not multidirectional the system will raise an error that the query is

not executable because variable x is not bound.

We now define sqroot as an invertible foreign Java function by redefining it as:
create function sqroot(Number x) -> Bag of (Number r)

 as multidirectional ('bf' foreign 'JAVA:Sqrt/sqrootBF')

 ('fb' foreign 'JAVA:Sqrt/sqrootFB');

after first having adding the method sqrootFB to Sqrt.java:
public void sqrootFB(CallContext cxt, Tuple tpl) {

 double x = tpl.getDoubleElem(1);

 tpl.setElem(0, x*x);

 cxt.emit(tpl);

}
Example 16. The Java implementation of the inverse to the sqroot foreign function

The method sqrootFB implements the inverse of sqroot. In this case position 1 in tpl is

bound and position 0 is filled in.

As in the example, multi-directional foreign functions are functions that can be executed also

when arguments are unknown. The benefit of multi-directional foreign functions is that a larger

class of queries calling the function is executable (safe), and that the system can make better

query optimization.

A multi-directional foreign function has several implementations depending on the binding

pattern of its arguments and results. The binding pattern is a string of 'b':s and 'f':s, indicating

which arguments or results in a given implementation are known or unknown, respectively.

A simple foreign OSQL function is a special case where all arguments are known and all results

are unknown.

To implement a multi-directional function you first need to think of for which binding patterns

implementations are needed. In the sqroot case one implementation handles the two square

roots and the other one handles the inverse square.

4. Data objects

The Java API uses a number of Java classes and methods documented in this section.

4.1. Tuples

The class Tuple is a commonly used class in the sa.engine Java interface. A tuple represents an

ordered finite sequence of sa.engine objects.

Tuples are used for many purposes in the interfaces:

• Parameter tuples are used in the plugin interface for representing argument and results of

methods implementing foreign functions in Java (Sec. 3).

• Tuples represent retrieved data elements when iterating through streams (Sec. 2).

• Tuples are used for representing argument lists in sa.engine function calls from

applications (Sec. 2.3).

4.1.1. Tuple creation

A new tuple with size s is created with the constructor Tuple(s).

If all elements of the new tuple are known in advance, you can also construct it using the

variadic constructor Tuple.make(…), for example Tuple.make(1,2,3).

The method t.getArity()returns the number of elements in tuple t.

The elements of a tuple are enumerated starting at 0 and can be accessed through a number of

tuple access functions specific for each element class, as described next.

4.1.2. Integer elements

To access an integer stored in position pos of tuple t, call the method t.getIntElem(pos).

Floating point numbers are rounded to the closest integer. An error is generated if there is no

number in the specified position of the tuple.

To store integer i in element pos of tuple t, call the method t.setElem(pos, i).

4.1.3. Floating point elements

To get a double precision floating point number stored in position pos of a tuple t, call the

method t.getDoubleElem(pos). Integers are converted to floating point numbers. An error

is generated if there is no number in the specified position of the tuple.

To store floating point number x in element pos of tuple t, call the method

t.setElem(pos,x).

4.1.4. String elements

To get a string stored in position pos of tuple t, call the method t.getStringElemt(pos).

An error is generated if the element is not a string.

To store a string str in element pos of tuple t, call the method t.setElem(pos,str).

4.1.5. Data type of element

The data type of element pos of tuple t can be tested with the following Boolean methods:

 t.isDouble(pos)

 t.isInteger(pos)

 t.isObject(pos)

 t.isString(pos)

 t.isVector(pos)

 t.isRecord(pos)

 t.isTuple(pos)

4.2. Vectors

OSQL vectors (type Vector) are represented in Java arrays. To get an array stored in position

pos of tuple t, call the method t.getArrayElem(pos). An error is generated if there is no

vector in the specified position of the tuple.

To store a copy of array a as an OSQL vector in element pos of tuple t, call the method

t.setElem(pos,a).

4.3. Records

OSQL records (type Record) are represented in Java as objects of class Record. To access a

record stored in position pos of tuple t, call the method t.getRecordElem(pos). An error

is generated if there is no record in position pos of tuple t.

As for tuples there are a number of methods for accessing the element of a record depending on

their type: getBool, getInt, getLong, getDouble, getString, getSeq,
getArray, getIntArray, getDoubleArray, getStringrray,

getRecordArray, getOid, getBinary, or getRecord.

Values are internally stored as single element tuples in a record. To retrieve the tuple t holding

the value of key k in record r call Tuple t = r.get(k). The call r.getInt("k")is

thus equivalent to r.get("k").getIntElem(0).

To store a copy of record r as an OSQL record in element pos of tuple t, call the method

t.setElem(pos,r).

To set value v to key k for record r call the method r.put(k,v).

4.4. Object proxies

An object proxy is a Java object representing a corresponding referenced sa.engine object

accessed through a connection. Object proxies can reference any kind of data stored in sa.engine,

including numbers, strings, surrogate objects, arrays, and internal sa.engine data structures.

Object proxies are represented using the Java class Oid.

To get an object proxy representing the OSQL object stored in position pos of tuple t, call the

method t.getElem(pos). If there is no element in position pos, Java null is returned.

To store an OSQL object proxy o in element pos of tuple t, call the method

t.setElem(pos,t).

The name of the sa.engine datatype of an object proxy o can be retrieved as a string by calling

the method o.getTypename().

The proxy object representing the datatype of proxy object o can be retrieved by calling the

method o.getType().

The connection to the sa.engine system owning an object proxy o can be retrieved by calling the

method o.getConnection().

