

sa.Storage 2.0

A main-memory storage manager

Stream Analyze Sweden, AB

2022-02-25

The sa.engine system uses a main memory database storage manager

called sa.Storage. Both data and models in an sa.engine system is stored

in a database image managed by sa.Storage. The storage manager is

scalable allowing data structures to dynamically and gracefully grow very

large without performance degradation or lags. The system includes a real-

time garbage collector that is incremental and based on reference counting

techniques. This means that the system never needs to stop for storage

reorganization and makes the behaviour of the system very predictable.

The storage manager is extensible so that users can define new kinds of

object, called storage types, managed by the system. An extensible byte

stream mechanism allows news kinds of I/O and communication

infrastructures to be plugged in without kernel code changes. sa.Storage is

tightly integrated with a Lisp system called aLisp. New aLisp data types

can be defined in C and made interoperable between Lisp and C. This

report documents sa.Storage. It also explains how to extend aLisp with

new datatypes and functions.

Table of contents

1. Introduction ...3

1.1. Object handles ...5
1.2. Physical Objects ..5

1.3. Dereferencing ..6
1.4. Assigning handles to locations ...8

1.5. Allocating physical objects. ...9
1.6. Defining storage types ... 11

1.7. Byte streams .. 12
1.7.1. Marshalling objects .. 14

2. Interfacing Lisp with C .. 14
2.1. Calling C from Lisp ... 15

2.1.1. Defining foreign Lisp functions in C .. 16
2.1.2. Variadic foreign Lisp functions .. 18

2.1.3. Defining special forms ... 19
2.2. Error management in C .. 20

2.2.1. Unwind Protection ... 20
2.2.2. Throwing errors. .. 22

2.3. Calling Lisp from C ... 23
2.3.1. Direct C calls ... 24

2.4. C functions for debugging .. 25
2.4.1. Tracing storage leaks ... 25

2.4.2. Checking validity of handles .. 27
2.4.3. Trapping memory corruption.. 27

2.5. Interrupt handling .. 28
References .. 29

1. Introduction

sa.Storage is a main memory storage manager that represents both data and models in sa.engine.

A central component of sa.engine is a main memory database managed by sa.Storage. Figure 1

illustrates the components of sa.Storage.

Figure 1: Components of the storage manager

With sa.Storage the C programmer has the choice of allocating physical objects persistently by

using a set of primitives provided by the storage manager. Persistency in this case means that

physical objects are allocated inside a memory area called the database image, which is a main

memory area where the database resides. C structures allocated inside the database image are

called physical objects.

The physical object manager manages the physical objects. In particular the physical memory

manager is responsible for allocating and freeing memory areas inside the database image. A real

time garbage collector instructs the physical memory manager to free physical objects no longer

used. The database image can be saved on disk in an image file using the persister by the C function

a_rollout(char *filename) or the Lisp function ROLLOUT. The image is restored when

restarting the system with the image file as command line argument or when initializing the system

from an embedder passing the name of the image file as parameter in sa_engine_init(int

argc, char **argv)[3].

The physical object manager is extensible allowing the programmer to register new kinds of

physical objects called storage types as plug-ins without kernel code changes. All physical objects

are tagged with a numeric storage type identifier. There are a number of built-in basic storage types

and new ones can easily be added in C.

When physical objects are changed the history manager can optionally be used to record state

changes of the updated object before and after the update in a history list inside the database image.

The history list allows to restore the old state before the update in case of errors. Since the history

list is implemented as a main memory linked list there is a very low performance penalty in using

the history list. Nevertheless, it will occupy some space and the programmer therefore has the

option to not use the history list when state changes need not be recorded.

sa.Storage can be extended in several ways by hooking up C functions without kernel changes:

1. Custom storage types can be implemented by registering a number of C functions for each

new storage type to implement allocation, dealloction, printing, garbage collection, etc.

2. Custom byte streams can be implemented as plugins. A byte stream is a conventional

stream of bytes as used in, e.g., C-based file systems. This makes the system agnostic to

underlying file and communication infrastructures. By default byte streams are defined for

C-files, TCP sockets, TLS sockets, and main memory C strings. It is possible to add new

byte streams as C plugins for custom file and communication systems without changing

any kernel code.

3. For each storage type custom linearization and delinearization functions can be plugged

in without any code changes. Once the (de-)linearization functions are defined the physical

objects can be written into file or communication streams in such a way that they are

recreated when read back or received. There can be different (de-)linearization for different

byte streams; for example, arrays are printed binarily to files and sockets but textually

(human readable) on standard output.

The storage manager is a separate subsystem, which is independent of the rest of the sa.engine

system. There are several sa.engine system layers on top of the storage manager. An important

layer is a Lisp interpreter, aLisp,which is a Lisp interpreter tightly interfaced with sa.Storage. A

large part of sa.engine is written in aLisp. The use of the aLisp system is documented separately

in [1], while this document includes a description of how to extend aLisp with new data types

and functions written in C. The datatypes of aLisp are all implemented as storage types. The

sa.Storage system itself is independent of aLisp.

Another important service of the storage manager is to provide a garbage collector that

automatically deallocates memory in the database image that is no longer used.

Data can also be allocated transiently by using the usual C routines malloc, etc., but transient data

cannot be saved on disk and are lost when the system exits. Unlike storage objects, the programmer

is responsible for deallocating transient data manually since C has no automatic garbage collector.

A particular problem is thereby handling references between persistent and transient data since

transient data is lost when the system is restarted. For this, there is a special mechanism to restore

transient data when the system is restarted.

While physical data objects are C record structures stored in the database image, logical objects

represent object used in OSQL. Only logical objects can be used in OSQL, while physical objects

can be manipulated in C/C++ or aLisp. The logical data objects are internally represented by one

or several physical objects. For example, OSQL objects of logical data type INTEGER are directly

represented by a physical object having a storage type also named INTEGER. Similarly, other

simple literal objects (e.g. real numbers and strings) are internally represented as directly

corresponding physical objects. More complex objects, e.g. the logical objects of type

FUNCTION, are represented by data structures consisting of several physical objects of different

types. Logical objects in OSQL having explicit object identifiers, called surrogate objects, are

represented by the storage type named OID with type tag SURROGATETYPE. Physical objects

having storage type named OID describe the properties of logical surrogate object. One property

of an OID object is a numeric identifier (the OID number) maintained by the OID manager;

another one is the OSQL type of the logical object.

1.1. Object handles

All accesses to physical objects is made through object handles, which are indirect identifiers for

physical data records in C inside the database image. The representation of object handles is

currently unsigned 32-bit integers, but the system can be reconfigured for different kinds of object

handle representations (e.g. 64-bits integers or pointers). In order to make the application code

both fast and independent of the internal representation of handles, the handles are always

manipulated through a set of C macros and utility functions. The interface with the storage manager

is defined by the header file sa_storage.h.

Object handles are declared as C type ohandle and initialized to the global C constant nil.

1.2. Physical Objects

With every object handle there is an associated C data structure in the database image representing

the physical object holding the value of the handle. Every persistent data item to be saved in the

database image must be represented as physical objects, including literals such as integers and

strings. The physical objects can be accessed indirectly through the object handles. The physical

data objects themselves are C structures containing the data stored persistently in the database

image together with a storage type identifier of the object. The layout of the physical data object

depends on the storage type. The first two bytes of a physical object are always reserved for the

system; the succeeding bytes are used for storing the data. For example, integers are represented

by this structure:

struct integercell

{

 objtags tags;

 HEADFILLER;

 char data[8];

};

The field tags is used by the system, the field data stores the actual 64-bits integer value, and

filler aligns the value to a full-word.

The header of a physical object (field tags with C type objtags) is maintained by the storage

manager. It contains the identification of its physical type (1 byte) and a reference counter (1 byte)

used by the automatic garbage collector.

Every storage type has an associated storage type identifier number and a unique storage type

name string known to the storage manager. The main memory array typefns represents

information about the storage types. Since the type identifier is represented by one byte there can

be up to 256 physical types defined. A number of (currently 20) physical storage types are

predefined, including LIST, SYMBOL, INTEGER, REAL, EXTFN (foreign aLisp functions),

CLOSURE (aLisp closures), STRING, ARRAY (1D fixed size arrays), STREAM (file streams),

TEXTSTREAM (streams to text buffers), HASHTAB (hash tables), and BINARY (bit strings). In

sa_torage.h there are structure definitions defined for the physical representation of most of

the built-in storage types. The convention is used that if the storage type is named xxx the template

has the name xxxcell, e.g. REAL has a template named realcell, etc. The type identification

numbers for most built-in storage types are defined as C macros in sa_torage.h, with the

convention that a type named xxx has a corresponding identification number XXXTYPE if it is

defined as a C macro, or xxxtype if it is bound to a global C variable. For example, physical

objects representing integers are identified by the data type tag INTEGERTYPE stored as the 2nd

byte in field tags of integercell.

The C/C++ programmer can extend the built-in set of storage types through the C function

a_definetype, explained below. It defines to the storage manager the properties of the new

storage type.

1.3. Dereferencing

In order to access or change the contents of the physical object for a handle, the handle has to be

converted into a C pointer to the physical object in the database image. This process is called to

dereference the handle. The dereferencing of object handles is very fast and does not involve any

data copying; it involves just an offset computation.

Once the physical object has been dereferenced its contents can be investigated by system provided

C macros and functions or directly by C pointer operations. However, notice that data in the image

may move when new data is allocated, so the programmer can cache direct pointers to physical

objects through dereferencing only when it is guaranteed that no new data is allocated in the image.

To be safe physical objects should always be accessed by dereferencing handles unless you know

that the dereferenced object cannot move between accesses.

The following C macro dereferences a handle:

dr(x,str)

dr returns the address inside the database image of the physical object referenced by the handle x

casted as a C struct named str. For example, if the C variable ic contains a handle to an integer,

the actual value of the integer is accessed with dr(ic,integercell)->data. The structure

integercell represents 8-byte (64-bits) integers. The macro getinteger(h) dereferences

h as a C 64-bits integer (type named LONGINT) while getinteger32(h) casts the integer to

C-type int.

The following C function prints an integer referenced by the handle h:

void printint(ohandle h)

{

 struct integercell *dh = getinteger32(h);

 printf(“The integer is %d\n”, dh);

}

Notice that here the parameter h must be an object handle referencing a physical object of type

INTEGER, otherwise the system might crash. To make printint safe it therefore should always

check that h actually references an integer. The following C macro can be used for investigating

the type of a physical object handle:

a_datatype(h)

returns the type identifier of a handle h.

For example, the function printint2 checks that h actually is an integer before printing its

value:

void printint2(ohandle h)

{

 if(a_datatype(h) == INTEGERTYPE)

 printf(“The integer is %d\n”,getinteger32(h));

 else printf(“It is not an integer\n”);

}

WARNING: Storage manager operations may invalidate C pointers to physical objects in the

database image since the physical objects might move to other memory locations when the image

is expanded. Thus, dereferenced C-pointers may become incorrect once a system call is made that

causes the image to expand. Physical object allocation is the only system operation that may cause

this. Thus, if a system function is called that is suspected to do object allocation (most do), the

dereferencing must be redone. Also, if the current C-thread is unlocked, some other thread my

invalidate dereferenced handles.

1.4. Assigning handles to locations

In order for the storage manager and garbage collector to function correctly, a C location h

(variable or field) of type ohandle must be initialized to the global variable nil by declaring

it:

ohandle h=nil;

To update the location the following C macro must be used:

a_setf(loc,h);

a_setf(loc,h) corresponds to an assignment of the C location loc (i.e. loc is a C variable

or field of type ohandle) to the object handle h, i.e. loc=h, but, unlike an assignment, a_setf

handles reassignments of locations correctly, a_setf(loc, h) decreases the reference count

of the handle previously referenced from loc and increases the reference counter of h The

reference counter increment of h indicates to the system that there is some location (i.e. loc) that

now holds a reference to the physical object h and it therefore cannot be deallocated until the

location is released, meaning that the location loc does not need to access the object any more.

A location loc is released with the C macro:

a_free(loc)

After calling a_free(loc) the handle in loc will not be physically removed from the database

image if there is some other location still holding a reference to it. No other location holds a

reference to a physical object if the reference counter is 0. Thus, when the reference counter is

decreased to 0 by a_free() or a_setf() the physical object is passed to the garbage collector

for deallocation from the image. Thus, unlike the C function free(loc), a_free(loc) will

deallocate x only when there is no other location holding a reference the object handle in loc.

Notice that Lisp symbols (e.g. nil) are not garbage collected and thus not reference counted.

Notice that the location must be previously assigned to some handle before a_setf() can be

used, otherwise the system is likely to crash when trying to release a non-existing handle. It is

therefore required to always initialize C handle locations to nil by declaring

ohandle loc=nil;

before calling a_setf(loc,..). An alternative is to use the macro a_let(loc,h) the first

time a location is assigned a handle. It is similar to a_let() but assumes that the old value of

loc was uninitialized and will therefore only increase the reference counter of h, while ignoring

the old value in loc. This code

ohandle loc;

a_let(loc,h);

is equivalent to:
ohandle loc=nil;

a_setf(loc,h);

1.5. Allocating physical objects.

Physical objects inside the database image can be allocated only through a number of storage

manager primitives (not through e.g. malloc()). When a physical object is allocated it initializes

the reference counter to 0.

In sa_storage.h, for each built-in storage type there is a C macro (upper case) or a variable

(lower case) containing the identifier for the type.

Type-name Type tag Short description

LIST LISTTYPE Linked lists

SYMBOL SYMBOLTYPE Symbols

INTEGER INTEGERTYPE 64-bits integers

REAL REALTYPE 64-bits floating point numbers

STRING STRINGTYPE Strings

ARRAY ARRAYTYPE 1-D arrays (vectors) of handles

BINARY BINARYTYPE 1-D byte arrays inside image

MEMORY MEMORYTYPE Memory areas outside image

OID SURROGATETYPE Surrogate objects

STREAM STREAMTYPE File streams of bytes

TEXTSTREAM TEXTSTREAMTYPE Byte streams over strings

SOCKET sockettype Byte stream over sockets

HASHTAB HASHTYPE Hash tables

HASHBUCKET HASHBUCKETTYPE Internal buckets of hash tables

LOGRECORD logrecordtype Update events in history lists

EXTFN EXTFNTYPE Foreign Lisp function in C

CLOSURE CLOSURECELL Lisp closure

For most built-in datatypes there are C macros or functions for construction and access. For

example, to allocate a new handle of type STRING with the content “Hello world” you can use

the macro mkstring() that returns a handle to the new string:

{

 ohandle mystring=nil;

 ...

 a_setf(mystring,mkstring("Hello world"))

 ...

 a_free(mystring);

};

To dereference a handle referencing a STRING object the macro getstring can be used:

{

 hhandle mystring=nil;

 char *mystringcont;

 a_setf(mystring,mkstring("Hello world"));

 mystringcont = getstring(mystring);

 printf("%s\n",mystringcont);

 a_free(mystring);

};

The following are examples of C library functions and macros used for manipulating the built-in

storage types:

ohandle mkinteger(int i) (macro) Construct handle for a new integer

int integerp(ohandle h) (macro) TRUE if h is a handle for an integer

int getinteger(ohandle h) (macro) Dereference a handle for an integer

ohandle mkreal(double r) (macro) Construct handle for a new real

int realp(ohandle h) (macro) TRUE if h is a handle for a real

double getreal(ohandle h) Dereference a handle for a real

ohandle mkstring(char *s) (macro) Create handle for a new string

int stringp(ohandle s) (macro) TRUE if h is a handle for a string

char *getstring(ohandle s) (macro) Dereference a handle for a string

ohandle new_array(int size,ohandle init)

 Construct handle for a new array with elements init

int arrayp(ohandle h) TRUE if h is a handle for an array

int a_arraysize(ohandle arr) return the array size
ohandle a_seta(ohandle arr,int pos,ohandle val)

 Set an array element
ohandle a_elt(ohandle arr,int pos)

 Retrieve array element
ohandle a_vector(ohandle x1,...,xn,NULL)

 Create a new array and its elements x1 ... xn.

ohandle cons(ohandle x,ohandle y) Create handle for a new list cell

int listp(ohandle h) (macro) TRUE if h is a list cell

ohandle hd(ohandle h) (macro) Head of list cell

ohandle tl(ohandle h) (macro) Tail of list cell
ohandle a_list(ohandle x1,...,xn,NULL)

 Create new list of x1 ... xn

ohandle mksymbol(char *x) (macro) Create a new symbol

int symbolp(ohandle h) (macro) TRUE if h is a symbol

ohandle globval(ohandle h) (macro) Get global value of symbol.

char *getpname(ohandle h) (macro) Get print name of symbol

a_print(ohandle x) Print object of any type. Very useful for debugging.

ohandle t Symbol T representing TRUE

ohandle nil Symbol NIL representing empty list and FALSE

For example, the following C function adds two integers:

ohandle add(ohandle x, ohandle y)

{

 LONGINT sum;

 if(a_datatype(x) != INTEGERTYPE ||

 a_datatype(y) != INTEGERTYPE) {

 printf(“Cannot add non-integers\n”);

 exit(1);  Should call error manager here.

 }

 sum = getinteger(x) + getinteger(y);

 return mkinteger(sum);

}

The following code fragment allocates two integers, calls add(), and prints the sum.

 ohandle x=nil, y=nil, s=nil; // Local handles must be initialized!

 a_setf(x,mkinteger(1));// assign x to new integer 1

 a_setf(y,mkinteger(2));// assign y to new integer 2

 a_setf(s,add(x,y)); // assign s to new integer as sum of a x and y

 printf("The sum is %d\n",getinteger(s));

 a_free(s); // release locations s, x, y

 a_free(x);

 a_free(y);

Notice that the datatype of an object handle should always be checked before it can be

dereferenced. It will later be shown how to utilize the exception system of sa.engine when type

errors occur.

1.6. Defining storage types

This subsection describes how to introduce new storage types to sa.Storage. This is required when

new C data are defined for aLisp.

The include file sa_storage.h contains record templates for each storage type.

There is a global type table which associates a number of optional C functions with each storage

type. A new storage type is introduced into the system (thus expanding the type table) by calling

the C function a_definetype():

int a_definetype(char *name,

 void (*dealloc_function) (ohandle),

 void (*print_function) (ohandle,ohandle,int))

a_definetype() adds a new storage type named name to the type table and returns its type

identifier as an integer.

dealloc_function(ohandle h) is a required C function taking a handle of the new type

as argument. It is a destructor called only by the garbage collector when the object is

deallocated. It shall release all location handles referenced by the object and call storage

manager primitives to deallocate the storage occupied by the object.

print_function(ohandle h, ohandle str, int mode) is a print function to

provide a customized printing into the stream str of physical objects of the new type. A

default print function is called if it is NULL. See section 1.7.1.

1.7. Byte streams

sa.Storage has several data types representing byte streams:

STREAM represents regular C file streams.

TEXTSTREAM represents streams over buffers in the database image.

SOCKET represents socket streams for communication with other sa.engine systems.

The following system standard streams are defined:

ohandle stdinstream C’s standard input stream

ohandle stdoutstream C’s standard output stream

Streams are represented as physical objects with special stream attributes in the structure

streamheader stored in physical objects after the tags in beginning of the template. For

example, the storage type STREAM for file steams has the template:

struct streamcell /* OS file streams */

{

 objtags tags;

 struct streamheader header;

 int opened; /* TRUE while file opened */

 int tailed; /* TRUE if file is tailed */

 FILE *fp; /* OS file pointer */

};

The structure streamheader has the template:
struct streamheader

{

 short int bytes; /* Total size of object in bytes, incl. header */

 char autoflush; /* Flush after each item and new line */

 char systime; /* Maintain current systime */

 char newline; /* True when \n is just printed */

 char filler;

 int line_num; /* Current line number */

 ohandle logstream;/* Stream to copy input to if non-NIL */

 ohandle origin; /* ID of sender of data if known or nil */

 ohandle destination;/* ID of receiver of data if known or nil */

};

The header field must always be present for stream templates. Additional specific attributes can

be added after the end of the stream header. Once a storage type has been defined using

definetype() it can be made into a stream by a call to a

define_stream()implementation:

int a_define_stream_implementation(int tag, /* Storage type */

 int(*getc)(ohandle),

 int(*ungetc)(int,ohandle),

 int(*feof)(ohandle),

 int(*puts)(char*,ohandle),

 int(*putc)(int,ohandle),

 int(*fflush)(ohandle),

 int(*fclose)(ohandle));

The first argument, tag, is the type tag (returned by definetype()) of the defined stream type.

Each stream should have the following associated functions (methods):

int getc(ohandle stream) Returns the next character in stream.

int ungetc(int c, ohandle stream)

 Put back character c in stream.

int feof(ohandle stream) Return TRUE if end-of-file reached.

int putc(int c, ohandle stream)

 Write character c to the stream

Int readbytes(ohandle stream, void *block, unsigned int len)

 Read a block of data from the stream. The slower putc method is used if

this method is NULL.

int writebytes(ohandle stream, void *block, unsigned int len)

 Write a block of data to the stream. The slower getc method is used if this

method is NULL.

int fflush(ohandle stream) Flush stream buffer contents.

int fclose(ohandle stream) Close the stream.

Once these methods are defined and registered the user can use the following generic stream

functions to manipulate the new stream:

int a_getc(ohandle stream); Read one character

int a_ungetc(int c, ohandle stream); Unread one character

int a_puts(char *str,ohandle stream); Write string

int a_writebytes(ohandle stream, void *buff, unsigned int len);

 Write block

int a_putc(int c, ohandle stream); Write a character

int a_puti(LONGINT i, ohandle stream); Write an integer

int a_putr(double i, ohandle stream); Write a real number

int a_readbytes(ohandle stream, void *buff, unsigned int len);

 Read block

int a_fclose(ohandle stream); Close stream

int a_feof(ohandle stream); Test for end-of-file

int a_fflush(ohandle stream); Flush stream buffer

The performance of stream management can be substantially improved by moving bulks of data

to or from the stream through calls to a_printbytes() and a_readbytes(). If the

corresponding methods are not registered with a stream, writing to and reading from the stream is

slower since it will be done byte-by-byte.

1.7.1. Marshalling objects

Streams are usually used for writing object in such a format that they can later be restored by

reading. This is particularly important when using streams to communicate data between sa.engine

peers, e.g. using sockets. The function a_printobj(handle h, handle str) writes the

physical object h on a stream str in such a format (S-expression) that a copy of the object is

allocated when the function a_read(handle str) reads the object from the same stream.

Thus a_printobj() and a_read() are sa.Storage’s generic (de-)marshalling functions. They use

Lisp’s S-expressions to provide standardized marshalling and demarshalling for the built-in

storage types. Customized (de-)marshalling should be specified for user defined storage type, as

will be described below.

In C the following functions can be used for (de-)marshalling S-expressions:

ohandle a_read(ohandle stream)

 Read (unmarshal) S-expression from a stream. This corresponds to the

Lisp function READ.

ohandle a_print(ohandle s) Print S-expression a followed by a line feed on stdoutstream, normally

for debugging.

ohandle a_printobj(ohandle s, ohandle stream)

 Print S-expression s followed by a line feed as delimiter on stream. This

corresponds to the Lisp function PRINT.

ohandle a_prin1(ohandle s, ohandle stream, int princflg)

 Print S-expression s on stream. If princflg is FALSE the printout be

marshalled using the escape character \ when necessary to allow for

subsequent reading; if princflg is TRUE object will be written without

escapes and cannot be read using a_read. Notice that, since no delimiter

is inserted as with a_printobj(), it is up to the user to ensure proper

object delimitation.

ohandle a_terpri(ohandle stream)

 Write a line feed on the stream.

2. Interfacing Lisp with C

An aLisp function can be implemented as a C function and C functions can call aLisp functions.

aLisp and C can also share data structures without data copying or transformations. The error

management in aLisp and sa.engine can be utilized in C for uniform and efficient error

management.

In order to interface aLisp with C/C++ you must include the file sa_lisp.h in your C program.

This section describes how to call C functions from aLisp, and how to call aLisp functions from

C.

2.1. Calling C from Lisp

As a very simple example of an external Lisp function we define an aLisp function HELLO which

prints the string ‘Hello world’ on standard output. It has the C implementation:

#include "sa_lisp.h"

ohandle hellofn(bindtype env)

{

 printf("Hello world\n");

 return nil;

}

The include file sa_lisp.h contains all necessary declarations for implementing external Lisp

functions in C. External Lisp function definitions must always return handles of type ohandle.

Do not forget the return statement, otherwise the system might crash!

In order to be called from Lisp, an external Lisp function implementation has to be registered with

a symbolic aLisp name, in this case the symbol HELLO, by calling:

extfunction0("hello",hellofn);

A system convention is that an external Lisp function named XXX is named xxxfn in C, as for

HELLO.

The call to register an external Lisp function can be done in a main C program, the driver program,

after the system has been initialized after sa_engine_init(argc, argv)is called, or after

a DLL or shared object library is loaded dynamically. The following driver program initializes the

system, registers HELLO, and calls the aLisp read-eval-print loop (REPL) with prompter string

‘Lisp>’.

#include "sa_lisp.h"

ohandle hellofn(bindtype env)

{

 printf("Hello world\n");

 return nil;

}

void main(int argc, char **argc)

{

 sa_engine_init(argc,argv);

 extfunction0("hello", hellofn);

 evalloop("Lisp>");

}

When the above program is run the user can call HELLO from the REPL by typing

(hello)

Foreign Lisp functions can also be defined when loading C plugins (DLLs or shared objects) to

sa.engine or sa.core se documention of plug-ins in C.

2.1.1. Defining foreign Lisp functions in C

Lisp functions can be implemented as foreign Lisp functions in C. A foreign Lisp function fn()

with arguments x1, x2,..., xn must have the following signature in C:

ohandle fn(bindtype env,ohandle x1,ohandle x2,..,ohandle xn)

The first argument env is a binding environment used by the system for error handling, memory

management, and other things.

For example, the following function implements a foreign Lisp function to add two numbers:

ohandle addfn(bindtype env, ohandle x, ohandle y)

{

 int ix, iy, r; // will hold integer values of x, y and result

 // Dereference x into ix and raise

 // an error if x is not an integer:

 IntoInteger(x,ix,env);

 // This will not be executed if x is not an integer

 IntoInteger(y,iy,env);

 // Both x and y must be integers for this to execute

 r = ix + iy;

 return mkinteger(r);// Return a new physical integer object

}

addfn is registered with

exfunction2("add",addfn);

The number ’2’ after ’extfunction’ indicates that this foreign function takes two arguments.

Foreign Lisp functions should always check the legality of the handles they receive, otherwise the

system may crash. To check that a handle h is of an expected storage type (i.e. Lisp type) use the

C macro:

OfType(h,tpe,env)

A standard error will be generated if h does not have the storage type tag tpe. For integers the

above used macro IntoInteger(h, i, env) is a convenient alternative to OfType. It

safely dereferences handle h to integer i.

External Lisp functions are registered (assigned to Lisp symbols) by calling a system C function:

extfunctionX(char *name, Cfunction cfn);

Where name is the Lisp name of the foreign function and cfn is a pointer to its implementation

in C.

Different versions of extfunctionX() are available depending on the arity X of the external

Lisp function. For example,

extfunction2("add",addfn);

There are corresponding registration functions for foreign functions with arity 0, 1, 2, 3, 4, 5 named

extfunction0(), extfunction1(), etc.

When a physical object handle whose reference counter has been managed by a_setf() is to be

returned from a C-function the following C-macro should be used:

a_return(h);

a_return(h) returns h from the C-function after the reference counter of h has been decreased

without deallocating h if the counter reaches 0.

For example, the following external Lisp function calls addfn() twice to sum three integers:

ohandle add3fn(bindtype env, ohandle x, ohandle y, ohandle z)

{

 ohandle s=nil;

 a_setf(s,addfn(env,x,y));

 a_setf(s,addfn(env,s,z));

 a_return(s);

}

The variable s holds the result from add3fn().

If s instead had been returned by the C statement

 return s;

the result object would never be released from the location s since the reference counter would

not have been decreased, and there would be a memory leak.

The following function reverses a list:

ohandle myreversefn(bindtype env, ohandle l)

{

 ohandle lst=nil, res=nil;

 a_setf(lst,l);

 while(listp(lst))

 {

 a_setf(res,cons(hd(lst),res));

 a_setf(lst,tl(lst));

 }

 a_free(lst);

 a_return(res);

}

Register myreverse with:

extfunction1("myreverse", myreversefn);

WARNING: You cannot assign C function parameters (such as l in the example) with

a_setf(l,..) or release them with a_free(l), since C function parameters are not

reference counted. Instead the parameter l is assigned to the local variable lst in order to

subsequently use a_setf().

WARNING: The C implementation of a foreign Lisp function must always return a legal handle,

otherwise the system might crash. It is therefore recommended to run the system in ’debug mode’

(by calling (debugging t)) while testing external Lisp function so that the system checks the

legality of data passed between Lisp and C.

2.1.2. Variadic foreign Lisp functions

Variadic external functions accept any number of arguments. Foreign Lisp functions with more

than six arguments need to be defined as variadic functions. Variadic foreign Lisp functions have

the signature:

ohandle fn(bindtype args, bindtype env)

where env is the binding environment for raising errors, and args is a binding environment

representing the actual arguments of the function call. To access argument number i use the C

macro:

nthargval(args,i)

The arguments are enumerated from 1 and up.

The C function

int envarity(bindenv args)

returns the actual arity of the function call.

For example, the following Lisp function sumfn() adds an arbitrary number of integer

arguments:

ohandle sumfn(bindtype args,bindtype env)

{

 LONGINT sum=0;

 int arity=envarity(args), i, v;

 for(i=1;i<=arity;i++)

 {

 IntoInteger(nthargval(args,i),v,env);

 sum = sum + v;

 }

 return mkinteger(sum);

}

Variable arity functions are the registered to the system with extfunctionn():

extfunctionn("SUM",sumfn);

The Lisp function LIST has the following implementation:

ohandle listfn(bindtype args,bindtype env)

{

 ohandle res=nil;

 int arity=envarity(args), i;

 for(i=arity;i>=1;i--)

 {

 a_setf(res,cons(nthargval(args,i),res));

 }

 a_return(res);

}

Notice how the iteration over the arguments is done in reverse order to get the correct list element

order.

2.1.3. Defining special forms

Special forms are external Lisp functions whose arguments are not evaluated by the aLisp

interpreter when the C implementation function is called.

C functions implementing special forms have the signature:

ohandle fn(bindtype args,bindtype env)

Analogous to variadic foreign functions the macros envarity() and nthargval() can be

used to investigate the actual arguments. The difference is that nthargval() here returns the

unevaluated value, unlike for variadic functions where evaluated values are returned.

For example, the following C function implements the Lisp special form quote:

ohandle myquotefn(bindtype args, bindtype env)

{

 return nthargval(args,1);

}

Special forms are registered using extfunctionq():

extfunctionq("myquote",myquotefn);

For evaluating unevaluated forms this system function can be used:

ohandle evalfn(bindtype env, ohandle form)

For example, the following C function implements the special form (mywhile pred form1

form2 ...) that iteratively executes form1 etc. while pred is non-nil:

ohandle mywhilefn(bindtype args, bindtype env)

{

 ohandle cond=nil, v=nil;

 int arity = envarity(args), i;

 a_setf(cond, nthargval(args,1));

 for(;;)

 {

 a_setf(v, evalfn(env,cond)); /* Evaluate condition */

 if(v == nil)

 { /* Condition false */

 a_free(v); /* Release v and cond before returning */

 a_free(cond);

 return nil;

 }

 for(i=2; i<=arity; i++)

 {

 a_setf(v, evalfn(env, nthargval(args,i)));

 }

 }

}

Notice that v and cond must be released before the function is exited. Furthermore, the above

definition is not fully correct, since if evalfn() fails because of some logical error in the

evaluated form, an error will be thrown which will make evalfn() abort. Thus, in case of an

error in the evaluation, the storage referenced by v and cond will never be deallocated. Another

version of mywhile() which also manages this memory deallocation correctly will be presented

in the next section.

2.2. Error management in C

sa.engine has its own error management system integrated with the storage manager. In order for

the storage manager to correctly release data after failures, abnormal function exits should always

use the system error management, rather than directly calling C or C++ error management.

2.2.1. Unwind Protection

To unconditionally catch failed operation the unwind protect mechanism is used. This is often

necessary to guarantee that certain actions are performed even if some called function terminates

abnormally. For example, space may need to be deallocated or files be closed. For this purpose the

system provides an unwind-protect feature in C, similar to what is provided in Lisp. Unwind

protection is provided through the following three macros:

 unwind_protect_begin; /* New unwind-protected block */

 main code

 unwind_protect_catch; /* This statement MUST ALWAYS be executed */

 unwind code
 unwind_protect_end; /* Will handle thrown exceptions */

The main code is the code to be unwind protected. The unwind code is always executed both if the

main code fails or succeeds. In the unwind code, a flag, unwind_reset, is set to TRUE if the

code is executed as the result of an exception. The unwind code is executed outside the scope of

the current unwind protection. Thus, exceptions occurring during the execution of the unwind code

is thrown to the next higher unwind protection.

Notice that he unwind_protect_catch code must be executed; never return directly out of

the main code block.

Notice that omitting unwind_protect_end will cause a compiler warning, so that if you want

to catch all exceptions use unwind_protect_cancel instead of unwind_protect_end.

For example, a correct version of mywhile that releases memory also in case of an error in the

evaluation can be defined as follows:

ohandle mywhilefn(bindtype args, bindtype env)

{

 volatile ohandle cond=nil, v=nil;

 int arity = envarity(args), i;

 unwind_protect_begin

 a_setf(cond, nthargval(args,1));

 for(;;)

 {

 a_setf(v,evalfn(env,cond)); // Evaluate condition

 if(v == nil) // Condition false => exit for loop

 break;

 for(i=2; i<=arity; i++)

 {

 a_setf(v,evalfn(env,nthargval(args,i)));

 }

 }

 unwind_protect_catch;

 a_free(v); // Release v and cond before exiting function

 a_free(cond);

 unwind_protect_end;

 return nil;// This statement is not executed in case of an error

}

Notice that some compilers (e.g. gcc) may not restore local variables correctly when an exception

has occurred unless they are defined as volatile.

2.2.2. Throwing errors.

Every kind of error has an error number and an associated error message. There are predefined

error numbers for common errors defined in sa_storage.h. To throw an sa.engine error

condition use the system function:

ohandle a_throw_errorno(bindtype env, int no, ohandle form);

no is the error number.

form is the failed expression.

env is the binding environment for the error.

For example, the following code implements the Lisp function CAR:

ohandle mycarfn(bindtype env, ohandle x)

{

 if(x==nil) return nil; // (car nil) = nil

 if(a_datatype(x) != LISTTYPE)

 return a_throw_errorno(env,ARG_NOT_LIST, x);

 return hd(x);

}

Alternatively error messages rather than error number can be thrown by calling the function:

ohandle a_throw_errormsg(bindtype env, const char *msg, ohandle form);

The following is equivalent to the above call to a_throw_errorno():

 a_throw_errormsg(env, "Not a list", x);

Error messages are truncated to max 100 bytes.

A few convenience macros for common error checks are defined in sa_storage.h:

OfType(h,tpe,env) Raise a standard error if h is not of type tpe.

IntoString(h,into,env) Set the variable into (declared char* into) to a copy

of the text of a symbol or string object h. The copy is

pushed on the C stack and automatically freed when the C

function is exited.

IntoInteger(h,into,env) Convert numeric object h into C LONGINT integer.

IntoInteger32(h,into,env) Convert numeric object h into C int.

IntoDouble(h,into,env) Convert numeric object h into C double.

To register a new error to the system use:

int a_register_error(char *msg);

a_register_error(msg) gets a unique error number no for the error string msg to be used

in a_throw_errorno(env,no,x). If msg has been registered before its previous error

number is returned. Some error numbers (such as ARG_NOT_LIST) are defined as macros in

sa_storage.h. The system handles dynamic error messages passed to

sa_throw_errormsg() by assigning them the error number -1.

2.3. Calling Lisp from C

Lisp functions can be called from C by using the following C function:

ohandle call_lisp(ohandle lfn, bindtype env, int arity,

 ohandle a1, ohandle a2,...)

lfn is the Lisp function to call.

env is the error binding environment.

arity is the arity of the call.

a1,a2,... are the actual arguments of the call.

For example, the following code implements a Lisp function (mymap l fn) that applies Lisp

function fn on each element in list l:

ohandle mymapfn(bindtype env, ohandle l, ohandle fn)

{

 ohandle res=nil, lst=nil;

 unwind_protect_begin;

 a_setf(lst,l);

 while(listp(lst))

 {

 a_setf(res,call_lisp(fn,env,1,hd(lst)));

 a_setf(lst,tl(lst));

 }

 unwind_protect_catch;

 a_free(res);

 a_free(lst);

 unwind_protect_end;

 return nil;

}

Notice that the called Lisp function might allocate new data objects and these have to be freed

correctly by assigning res using a_setf() and always releasing res when the function is

exited.

Notice also that unwind protection has to be used here to guarantee that the temporary memory

locations are always released even if the call to fn() causes an error exception.

The use of symbols is convenient for calling named Lisp functions from C. For example, the

following function prints each element in a list:

ohandle mapprintfn(bindtype env, ohandle l)

{

 ohandle printsymbol=nil, lst=nil;

 printsymbol = mksymbol("print");

 unwind_protect_begin;

 a_setf(lst,l);

 while(listp(lst))

 {

 call_lisp(printsymbol,env,1,hd(lst));

 a_setf(lst,tl(lst));

 }

 unwind_protect_catch;

 a_free(lst); // in case printsymbol fails

 unwind_protect_end;

 return nil;

}

Notice that symbols like print are permanent and when a symbol is referenced from a location

it need not be reference counted as in the assignment of printsymbol above. Also the call to

print is guaranteed to not generate any new objects and need not be released.

To call Lisp functions with variable arity use:

ohandle apply_lisp(ohandle fn, bindtype env, int arity, ohandle args[]);

The difference to call_lisp() is that the arguments are passed in the array args.

To evaluate a C string of Lisp forms use:

ohandle eval_forms(bindtype env, char *forms);

All forms in forms are evaluated. The value of the last evaluation is returned as value. Don’t

forget to release the result.

2.3.1. Direct C calls

If the name of a C function implementing an Lisp function is known, it is more efficient to directly

call the C function than to use call_lisp(). However, arguments and results of such direct C

calls must be handled carefully to avoid storage leaks, since the automatic deallocation of

temporary storage is not performed with direct C function calls. For example, the following

correctly defined external Lisp function prints ‘hello world’ by directly calling the Lisp function

print:

ohandle hellofn(bindtype env)

{

 ohandle msg=nil;

 a_setf(msg, mkstring("Hello world"));

 printfn(env, msg, nil); // PRINT has two arguments

 a_free(msg);

 return nil;

}

By contrast, the following incorrect implementation would cause a storage leak because the ‘hello

world’ string is not deallocated:

ohandle hellofn(bindtype env)

{

 printfn(env, mkstring("Hello world"), nil);

 return nil;

}

Notice that call_lisp() automatically garbage collects its arguments upon return; thus

temporary objects among the arguments are automatically freed. For example, the following

definition of myhello() would be correct but slower than the previous implementation:

ohandle hellofn(bindtype env)

{

 call_lisp(mksymbol("print"), 2, env, mkstring("Hello world"), nil);

 return nil;

}

2.4. C functions for debugging

There are a number of function useful for debugging C programs calling the sa.engine kernel. The

most useful one is a_print that prints the S-expression representation of the objects referenced

by handle h:

ohandle a_print(ohandle h)

You can also print using the OSQL format of h with:
int sa_print(ohandle h)

It returns an error code if h cannot be printed.

2.4.1. Tracing storage leaks

When defining a new storage type it is important to make sure that object allocation and

deallocation work OK. Therefore, there is a facility in the OSQL and aLisp REPLs to trace how

many objects are allocated, or deallocated, respectively. Turn on that facility by evaluating the

Lisp form

(allocstat t)

The system will then make a report of how many objects have been (de)allocated for each storage

type. Make sure that the same number of objects is deallocated and allocated if that is expected.

Notice that logged objects are not deallocated until commit or rollback is called. Therefore,

you should turn off logging before tracing storage leaks by the command:

logging off;

Notice that the first time a Lisp call is made there may be just-in-time macro expansions and caches

that make the storage count balancing not match. Thus you should make one or two extra calls to

“warm up” the system before tracing storage leaks.

Notice that object references might be saved in the database log and therefore you should rollback

database updates when necessary to get the balance between allocated and deallocated objects.

Turn off storage usage tracing with the Lisp call:

(allocstat nil)

The C the function

a_allocstat(int clear)

does the same as allocstat. If the flag clear is TRUE the statistics is cleared without printing

a report.

Notice that you normally have to “warm up” the system before using a_allocstat().

If you have a leak that caused the image to grow continuously, you can trace what functions were

called by calling the Lisp function:

(trace-expand flag depth)

If flag is true, it makes a Lisp function backtrace every time the high watermark of the database

image is expanded. The depth of the backtrace is specified with depth. In this way you may get

to know where the objects for a storage leak are allocated.

You can trace what Lisp functions were called when creating an object that was NOT deallocated

during an evaluation by first calling:

(storage-trace flag depth)

Then do your evaluation and print backtraces of the Lisp functions allocating objects remaining

after the evaluation by calling:

(print-storage-trace &optional file)

The reference counter of a physical storage object referenced by a handle h is obtained with:

int refcnt(ohandle h)

When the reference counter of the object referenced by h is changed to 0 the garbage collector will

call the finalizer of the object and mark it as deallocated by setting the reference counter to

DEALLOCREF.

The following trapper calls the C function trapper when the object referenced by handle h is

deallocated:

void a_trap_dealloc(ohandle h, void(*trapper)(ohandle))

2.4.2. Checking validity of handles

A common bug is that some handle is not properly initialized or that its memory has been

overwritten. You can check the validity of a handle h by calling:

int illegal_handle(ohandle h, int circular_depth)

If the second argument is positive, illegal_handle() also tests whether h references a

circular list structure down to the specified depth from h.

If the function returns a non-zero value it is an error code no that indicates how h is corrupted.

The corresponding error message can be retrieved by calling:

char *a_errormessage(int no)

2.4.3. Trapping memory corruption

When adding C-code to the system it may happen that the database image accidently becomes

corrupted, meaning that some handle references some illegal location. If all the conventions for

writing C-code are not systematically followed errors typically occur in a completely different

place of the system. For that reason one would like to know where in the C-code the memory is

destroyed.

The C-macro

CI;

checks if the image is corrupted. If that is the case the system will print on what C source code line

the corruption is detected along with a small explanation. Add calls to CI in the C-code where you

suspect memory corruption occurs.

You can make the sa.engine interpreters continuously call CI by calling:

a_system_trust (0)

When the argument of a_system_trust is 0 the sa.engine kernel will continuously call CI.

Calling a_system_trust (0) will signal memory corruptions in general with a significant

performance overhead. The function has the signature:

int a_system_trust(int level)

It returns the old trust level. To just get the current trust level, call a_system_trust(-1). The

corresponding Lisp function is:

(system-trust level)

When calling system-trust from lisp the level is also saved in the image making it persistent,

while the trust level of a_system_trust is not saved when the image is saved.

When the system finds a corrupted memory location in the image it will print an error message:

Memory corruption in location 134000 (= 12345)

The two numbers 134000 and 12345 indicate that memory location denoted by handle (ohandle)

134000 is corrupt and points to a word containing the integer 12345. To trap this when it actually

happens can be done by calling the function

 a_setdemon(ohandle loc, int val)

for example

 a_set_demon(134000, 12345);

It causes the aLisp interpreter to continuously check if loc is equal to val. Whenever loc becomes

equal to val an error is raised and the demon is turned off.

2.5. Interrupt handling

The interrupt handling system is managed by the Lisp function (catchinterrupt). This

function is called whenever an interrupt has occurred. It either prints a message or catches the

interrupt. The C macro CheckInterrupt checks if an error has occurred and calls

catchinterrupt if that is the case.

An interrupt is indicated to the system when the global C variable InterruptHasOccurred

is set to TRUE. The macro CheckInterrupt is called after every Lisp function call. If you write

long-running C code you should insert calls to CheckInterrupt to allow interrupts to be

managed.

If interrupt signal signo is raised in your C-program under Unix it will be caught if you

beforehand have called:

(sig-bt signo)

Then the system will automatically print a backtrace of the C call stack and then abend. By default

(sig-bt 11) is turned on under Unix to trap memory corruption.

For interactive trapping of signals you can call the function:

(sig-trap signo)

It will enter a special Lisp REPL when signal signo is raised. This REPL is not a regular Lisp

break loop as in Section 7.1 of [1] since there are no break commands. Instead you can explicitly

make a C backtrace by calling (c-backtrace) and a corresponding Lisp backtrace by calling

(backtrace). The current thread identifier is obtained with (thread-id). To exit the REPL

call the function (exit). Call (quit-now rc) to abend sa.engine with return code rc.

References

[1] aLisp User’s Guide, Version 2.0, Stream Analyze Sweden AB, 2020.

[2] Guy L. Steele Jr.: Common LISP the language, Digital Press,

http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

[3] sa.engine C Interfaces, Version 2.0, Stream Analyze Sweden AB, 2020

[4] sa.engine Java Interfaces, Version 2.2, Stream Analyze Sweden AB, 2020,

[5] sa.engine Lisp Interfaces, Version 2.1, Stream Analyze Sweden AB, 2020.

http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

