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The sa.engine system uses a main memory database storage manager 

called sa.Storage. Both data and models in an sa.engine system is stored 

in a database image managed by sa.Storage. The storage manager is 

scalable allowing data structures to dynamically and gracefully grow very 

large without performance degradation or lags. The system includes a real-

time garbage collector that is incremental and based on reference counting 

techniques. This means that the system never needs to stop for storage 

reorganization and makes the behaviour of the system very predictable. 

The storage manager is extensible so that users can define new kinds of 

object, called storage types, managed by the system. An extensible byte 

stream mechanism allows news kinds of I/O and communication 

infrastructures to be plugged in without kernel code changes. sa.Storage is 

tightly integrated with a Lisp system called aLisp. New aLisp data types 

can be defined in C and made interoperable between Lisp and C. This 

report documents sa.Storage. It also explains how to extend aLisp with 

new datatypes and functions.  
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1. Introduction 

sa.Storage is a main memory storage manager that represents both data and models in sa.engine. 

A central component of sa.engine is a main memory database managed by sa.Storage.  Figure 1 

illustrates the components of sa.Storage.  

 

Figure 1: Components of the storage manager 

With sa.Storage the C programmer has the choice of allocating physical objects persistently by 

using a set of primitives provided by the storage manager. Persistency in this case means that 

physical objects are allocated inside a memory area called the database image, which is a main 

memory area where the database resides. C structures allocated inside the database image are 

called physical objects. 

The physical object manager manages the physical objects. In particular the physical memory 

manager is responsible for allocating and freeing memory areas inside the database image. A real 

time garbage collector instructs the physical memory manager to free physical objects no longer 

used. The database image can be saved on disk in an image file using the persister by the C function 

a_rollout(char *filename) or the Lisp function ROLLOUT. The image is restored when 

restarting the system with the image file as command line argument or when initializing the system 

from an embedder passing the name of the image file as parameter in sa_engine_init(int 

argc, char **argv)[3]. 

The physical object manager is extensible allowing the programmer to register new kinds of 



physical objects called storage types as plug-ins without kernel code changes. All physical objects 

are tagged with a numeric storage type identifier. There are a number of built-in basic storage types 

and new ones can easily be added in C. 

When physical objects are changed the history manager can optionally be used to record state 

changes of the updated object before and after the update in a history list inside the database image. 

The history list allows to restore the old state before the update in case of errors. Since the history 

list is implemented as a main memory linked list there is a very low performance penalty in using 

the history list. Nevertheless, it will occupy some space and the programmer therefore has the 

option to not use the history list when state changes need not be recorded.  

sa.Storage can be extended in several ways by hooking up C functions without kernel changes: 

1. Custom storage types can be implemented by registering a number of C functions for each 

new storage type to implement allocation, dealloction, printing, garbage collection, etc. 

2. Custom byte streams can be implemented as plugins. A byte stream is a conventional 

stream of bytes as used in, e.g., C-based file systems. This makes the system agnostic to 

underlying file and communication infrastructures. By default byte streams are defined for 

C-files, TCP sockets, TLS sockets, and main memory C strings. It is possible to add new 

byte streams as C plugins for custom file and communication systems without changing 

any kernel code. 

3. For each storage type custom linearization and delinearization functions can be plugged 

in without any code changes. Once the (de-)linearization functions are defined the physical 

objects can be written into file or communication streams in such a way that they are 

recreated when read back or received. There can be different (de-)linearization for different 

byte streams; for example, arrays are printed binarily to files and sockets but textually 

(human readable) on standard output. 

The storage manager is a separate subsystem, which is independent of the rest of the sa.engine 

system. There are several sa.engine system layers on top of the storage manager. An important 

layer is a Lisp interpreter, aLisp,which is a Lisp interpreter tightly interfaced with sa.Storage. A 

large part of sa.engine is written in aLisp. The use of the aLisp system is documented separately 

in [1], while this document includes a description of how to extend aLisp with new data types 

and functions written in C. The datatypes of aLisp are all implemented as storage types. The 

sa.Storage system itself is independent of aLisp.  

Another important service of the storage manager is to provide a garbage collector that 

automatically deallocates memory in the database image that is no longer used. 

Data can also be allocated transiently by using the usual C routines malloc, etc., but transient data 

cannot be saved on disk and are lost when the system exits. Unlike storage objects, the programmer 

is responsible for deallocating transient data manually since C has no automatic garbage collector. 

A particular problem is thereby handling references between persistent and transient data since 



transient data is lost when the system is restarted. For this, there is a special mechanism to restore 

transient data when the system is restarted.   

While physical data objects are C record structures stored in the database image, logical objects 

represent object used in OSQL. Only logical objects can be used in OSQL, while physical objects 

can be manipulated in C/C++ or aLisp. The logical data objects are internally represented by one 

or several physical objects. For example, OSQL objects of logical data type INTEGER are directly 

represented by a physical object having a storage type also named INTEGER. Similarly, other 

simple literal objects (e.g. real numbers and strings) are internally represented as directly 

corresponding physical objects. More complex objects, e.g. the logical objects of type 

FUNCTION, are represented by data structures consisting of several physical objects of different 

types. Logical objects in OSQL having explicit object identifiers, called surrogate objects, are 

represented by the storage type named OID with type tag SURROGATETYPE. Physical objects 

having storage type named OID describe the properties of logical surrogate object. One property 

of an OID object is a numeric identifier (the OID number) maintained by the OID manager; 

another one is the OSQL type of the logical object.  

1.1. Object handles 

All accesses to physical objects is made through object handles, which are indirect identifiers for 

physical data records in C inside the database image. The representation of object handles is 

currently unsigned 32-bit integers, but the system can be reconfigured for different kinds of object 

handle representations (e.g. 64-bits integers or pointers). In order to make the application code 

both fast and independent of the internal representation of handles, the handles are always 

manipulated through a set of C macros and utility functions. The interface with the storage manager 

is defined by the header file sa_storage.h.  

Object handles are declared as C type ohandle and initialized to the global C constant nil.  

1.2. Physical Objects 

With every object handle there is an associated C data structure in the database image representing 

the physical object holding the value of the handle. Every persistent data item to be saved in the 

database image must be represented as physical objects, including literals such as integers and 

strings. The physical objects can be accessed indirectly through the object handles. The physical 

data objects themselves are C structures containing the data stored persistently in the database 

image together with a storage type identifier of the object. The layout of the physical data object 

depends on the storage type. The first two bytes of a physical object are always reserved for the 

system; the succeeding bytes are used for storing the data. For example, integers are represented 

by this structure: 

struct integercell 

{ 

  objtags tags; 



  HEADFILLER; 

  char data[8]; 

};  

The field tags is used by the system, the field data stores the actual 64-bits integer value, and 

filler aligns the value to a full-word. 

The header of a physical object (field tags with C type objtags) is maintained by the storage 

manager. It contains the identification of its physical type (1 byte) and a reference counter (1 byte) 

used by the automatic garbage collector.  

Every storage type has an associated storage type identifier number and a unique storage type 

name string known to the storage manager. The main memory array typefns represents 

information about the storage types. Since the type identifier is represented by one byte there can 

be up to 256 physical types defined. A number of (currently 20) physical storage types are 

predefined, including LIST, SYMBOL, INTEGER, REAL, EXTFN (foreign aLisp functions), 

CLOSURE (aLisp closures), STRING, ARRAY  (1D fixed size arrays), STREAM (file streams), 

TEXTSTREAM (streams to text buffers), HASHTAB (hash tables), and BINARY (bit strings). In 

sa_torage.h there are structure definitions defined for the physical representation of most of 

the built-in storage types. The convention is used that if the storage type is named xxx the template 

has the name xxxcell, e.g. REAL has a template named realcell, etc. The type identification 

numbers for most built-in storage types are defined as C macros in sa_torage.h, with the 

convention that a type named xxx has a corresponding identification number XXXTYPE if it is 

defined as a C macro, or xxxtype if it is bound to a global C variable. For example, physical 

objects representing integers are identified by the data type tag INTEGERTYPE stored as the 2nd 

byte in field tags of integercell.  

The C/C++ programmer can extend the built-in set of storage types through the C function 

a_definetype, explained below. It defines to the storage manager the properties of the new 

storage type.  

1.3. Dereferencing 

In order to access or change the contents of the physical object for a handle, the handle has to be 

converted into a C pointer to the physical object in the database image. This process is called to 

dereference the handle. The dereferencing of object handles is very fast and does not involve any 

data copying; it involves just an offset computation. 

Once the physical object has been dereferenced its contents can be investigated by system provided 

C macros and functions or directly by C pointer operations. However, notice that data in the image 

may move when new data is allocated, so the programmer can cache direct pointers to physical 

objects through dereferencing only when it is guaranteed that no new data is allocated in the image. 

To be safe physical objects should always be accessed by dereferencing handles unless you know 



that the dereferenced object cannot move between accesses.   

The following C macro dereferences a handle: 

dr(x,str)   

dr returns the address inside the database image of the physical object referenced by the handle x 

casted as a C struct named str. For example, if the C variable ic contains a handle to an integer, 

the actual value of the integer is accessed with dr(ic,integercell)->data. The structure 

integercell represents 8-byte (64-bits) integers. The macro getinteger(h) dereferences 

h as a C 64-bits integer  (type named LONGINT) while getinteger32(h) casts the integer to 

C-type int. 

The following C function prints an integer referenced by the handle h: 

void printint(ohandle h) 

{ 

   struct integercell *dh = getinteger32(h); 

   printf(“The integer is %d\n”, dh); 

} 

Notice that here the parameter h must be an object handle referencing a physical object of type 

INTEGER, otherwise the system might crash. To make printint safe it therefore should always 

check that h actually references an integer. The following C macro can be used for investigating 

the type of a physical object handle: 

a_datatype(h) 

returns the type identifier of a handle h.  

For example, the function printint2 checks that h actually is an integer before printing its 

value: 

void printint2(ohandle h) 

{ 

   if(a_datatype(h) == INTEGERTYPE) 

      printf(“The integer is %d\n”,getinteger32(h)); 

   else printf(“It is not an integer\n”); 

} 

WARNING: Storage manager operations may invalidate C pointers to physical objects in the 

database image since the physical objects might move to other memory locations when the image 

is expanded. Thus, dereferenced C-pointers may become incorrect once a system call is made that 

causes the image to expand. Physical object allocation is the only system operation that may cause 

this. Thus, if a system function is called that is suspected to do object allocation (most do), the 

dereferencing must be redone. Also, if the current C-thread is unlocked, some other thread my 

invalidate dereferenced handles. 



1.4. Assigning handles to locations 

In order for the storage manager and garbage collector to function correctly, a C location h 

(variable or field) of type ohandle must be initialized to the global variable nil by declaring 

it: 

ohandle h=nil;  

To update the location the following C macro must be used: 

a_setf(loc,h); 

a_setf(loc,h) corresponds to an assignment of the C location loc  (i.e. loc is a C variable 

or field of type ohandle) to the object handle h, i.e. loc=h, but, unlike an assignment, a_setf 

handles reassignments of locations correctly, a_setf(loc, h) decreases the reference count 

of the handle previously referenced from loc and increases the reference counter of h The 

reference counter increment of h indicates to the system that there is some location (i.e. loc) that 

now holds a reference to the physical object h and it therefore cannot be deallocated until the 

location is released, meaning that the location loc does not need to access the object any more. 

A location loc is released with the C macro: 

a_free(loc) 

After calling a_free(loc) the handle in loc will not be physically removed from the database 

image if there is some other location still holding a reference to it. No other location holds a 

reference to a physical object if the reference counter is 0. Thus, when the reference counter is 

decreased to 0 by a_free() or a_setf() the physical object is passed to the garbage collector 

for deallocation from the image. Thus, unlike the C function free(loc), a_free(loc) will 

deallocate x only when there is no other location holding a reference the object handle in loc. 

Notice that Lisp symbols (e.g. nil) are not garbage collected and thus not reference counted. 

Notice that the location must be previously assigned to some handle before a_setf() can be 

used, otherwise the system is likely to crash when trying to release a non-existing handle. It is 

therefore required to always initialize C handle locations to nil by declaring 

ohandle loc=nil;  

before calling a_setf(loc,..). An alternative is to use the macro a_let(loc,h) the first 

time a location is assigned a handle. It is similar to a_let() but assumes that the old value of 

loc was uninitialized and will therefore only increase the reference counter of h, while ignoring 

the old value in loc. This code 

ohandle loc; 

a_let(loc,h); 

is equivalent to: 
ohandle loc=nil; 

a_setf(loc,h); 



1.5. Allocating physical objects. 

Physical objects inside the database image can be allocated only through a number of storage 

manager primitives (not through e.g. malloc()). When a physical object is allocated it initializes 

the reference counter to 0.  

In sa_storage.h, for each built-in storage type there is a C macro (upper case) or a variable 

(lower case) containing the identifier for the type.  

Type-name  Type tag  Short description 

LIST  LISTTYPE  Linked lists  

SYMBOL  SYMBOLTYPE Symbols 

INTEGER  INTEGERTYPE 64-bits integers 

REAL  REALTYPE  64-bits floating point numbers 

STRING  STRINGTYPE Strings 

ARRAY  ARRAYTYPE  1-D arrays (vectors) of handles 

BINARY  BINARYTYPE 1-D byte arrays inside image 

MEMORY  MEMORYTYPE Memory areas outside image 

OID  SURROGATETYPE Surrogate objects 

STREAM  STREAMTYPE File streams of bytes 

TEXTSTREAM TEXTSTREAMTYPE Byte streams over strings 

SOCKET  sockettype Byte stream over sockets 

HASHTAB  HASHTYPE  Hash tables 

HASHBUCKET HASHBUCKETTYPE Internal buckets of hash tables 

LOGRECORD  logrecordtype Update events in history lists 

EXTFN  EXTFNTYPE  Foreign Lisp function in C 

CLOSURE  CLOSURECELL Lisp closure 

For most built-in datatypes there are C macros or functions for construction and access. For 

example, to allocate a new handle of type STRING with the content “Hello world” you can use 

the macro mkstring() that returns a handle to the new string: 

{ 

 ohandle mystring=nil;  

 ...  

 a_setf(mystring,mkstring("Hello world"))  

 ...  

 a_free(mystring);  

};  

To dereference a handle referencing a STRING object the macro getstring can be used:  

{  

 hhandle mystring=nil;  

 char *mystringcont;  

  

 a_setf(mystring,mkstring("Hello world"));  



 mystringcont = getstring(mystring);   

 printf("%s\n",mystringcont);  

 a_free(mystring);  

};  

The following are examples of C library functions and macros used for manipulating the built-in 

storage types:  

ohandle mkinteger(int i) (macro) Construct handle for a new integer  

int integerp(ohandle h) (macro) TRUE if h is a handle for an integer  

int getinteger(ohandle h) (macro) Dereference a handle for an integer  
  

ohandle mkreal(double r) (macro) Construct handle for a new real  

int realp(ohandle h) (macro) TRUE if h is a handle for a real  

double getreal(ohandle h) Dereference a handle for a real  
  

ohandle mkstring(char *s) (macro) Create handle for a new string  

int stringp(ohandle s) (macro) TRUE if h is a handle for a string  

char *getstring(ohandle s) (macro) Dereference a handle for a string  
  

ohandle new_array(int size,ohandle init)   

 Construct handle for a new array with elements init  

int arrayp(ohandle h) TRUE if h is a handle for an array  

int a_arraysize(ohandle arr) return the array size  
ohandle a_seta(ohandle arr,int pos,ohandle val)   

 Set an array element  
ohandle a_elt(ohandle arr,int pos)   

 Retrieve array element  
ohandle a_vector(ohandle x1,...,xn,NULL)   

 Create a new array and its elements x1 ... xn. 
  

ohandle cons(ohandle x,ohandle y) Create handle for a new list cell  

int listp(ohandle h) (macro) TRUE if h is a list cell 

ohandle hd(ohandle h) (macro) Head of list cell  

ohandle tl(ohandle h) (macro) Tail of list cell  
ohandle a_list(ohandle x1,...,xn,NULL)  

 Create new list of x1 ... xn 

 

ohandle mksymbol(char *x) (macro) Create a new symbol  

int symbolp(ohandle h) (macro) TRUE if h is a symbol 

ohandle globval(ohandle h) (macro) Get global value of symbol. 

char *getpname(ohandle h) (macro) Get print name of symbol 
 

a_print(ohandle x) Print object of any type. Very useful for debugging.  
  

ohandle t  Symbol T representing TRUE  

ohandle nil Symbol NIL representing empty list and FALSE 

For example, the following C function adds two integers: 

ohandle add(ohandle x, ohandle y) 

{ 

   LONGINT sum; 

 

   if(a_datatype(x) != INTEGERTYPE || 



      a_datatype(y) != INTEGERTYPE) { 

      printf(“Cannot add non-integers\n”); 

      exit(1);                       Should call error manager here. 

   } 

   sum = getinteger(x) + getinteger(y); 

   return mkinteger(sum); 

} 

The following code fragment allocates two integers, calls add(), and prints the sum.  

 

   ohandle x=nil, y=nil, s=nil; // Local handles must be initialized! 

 

   a_setf(x,mkinteger(1));// assign x to new integer 1 

   a_setf(y,mkinteger(2));// assign y to new integer 2 

   a_setf(s,add(x,y)); // assign s to new integer as sum of a x and y 

   printf("The sum is %d\n",getinteger(s)); 

   a_free(s);             // release locations s, x, y 

   a_free(x); 

   a_free(y); 

Notice that the datatype of an object handle should always be checked before it can be 

dereferenced. It will later be shown how to utilize the exception system of sa.engine when type 

errors occur. 

1.6. Defining storage types 

This subsection describes how to introduce new storage types to sa.Storage. This is required when 

new C data are defined for aLisp. 

The include file sa_storage.h contains record templates for each storage type.  

There is a global type table which associates a number of optional C functions with each storage 

type. A new storage type is introduced into the system (thus expanding the type table) by calling 

the C function a_definetype(): 

int a_definetype(char *name,  

          void (*dealloc_function) (ohandle), 

          void (*print_function) (ohandle,ohandle,int))  

 

a_definetype() adds a new storage type named name to the type table and returns its type 

identifier as an integer.  

dealloc_function(ohandle h) is a required C function taking a handle of the new type 

as argument. It is a destructor called only by the garbage collector when the object is 

deallocated. It shall release all location handles referenced by the object and call storage 

manager primitives to deallocate the storage occupied by the object. 

print_function(ohandle h, ohandle str, int mode) is a print function to 



provide a customized printing into the stream str of physical objects of the new type. A 

default print function is called if it is NULL. See section 1.7.1.  
 

1.7. Byte streams 

sa.Storage has several data types representing byte streams: 

STREAM represents regular C file streams. 

TEXTSTREAM  represents streams over buffers in the database image. 

SOCKET represents socket streams for communication with other sa.engine systems. 

The following system standard streams are defined:  

ohandle stdinstream  C’s standard input stream 

ohandle stdoutstream  C’s standard output stream 

Streams are represented as physical objects with special stream attributes in the structure 

streamheader stored in physical objects after the tags in beginning of the template. For 

example, the storage type STREAM for file steams has the template: 

struct streamcell   /* OS file streams */ 

{ 

  objtags tags; 

  struct streamheader header; 

  int opened;       /* TRUE while file opened */ 

  int tailed;       /* TRUE if file is tailed */ 

  FILE *fp;         /* OS file pointer */ 

}; 

 

The structure streamheader has the template: 
struct streamheader 

{ 

  short int bytes;  /* Total size of object in bytes, incl. header */ 

  char autoflush;   /* Flush after each item and new line */ 

  char systime;     /* Maintain current systime */ 

  char newline;     /* True when \n is just printed */ 

  char filler;  

  int line_num;     /* Current line number */ 

  ohandle logstream;/* Stream to copy input to if non-NIL */ 

  ohandle origin;   /* ID of sender of data if known or nil */ 

  ohandle destination;/* ID of receiver of data if known or nil */ 

}; 

The header field must always be present for stream templates. Additional specific attributes can 

be added after the end of the stream header. Once a storage type has been defined using 

definetype() it can be made into a stream by a call to a 

define_stream()implementation: 



int a_define_stream_implementation(int tag, /* Storage type */ 

                                 int(*getc)(ohandle), 

                  int(*ungetc)(int,ohandle), 

                  int(*feof)(ohandle), 

                  int(*puts)(char*,ohandle), 

                  int(*putc)(int,ohandle), 

                  int(*fflush)(ohandle), 

                  int(*fclose)(ohandle)); 

The first argument, tag, is the type tag (returned by definetype()) of the defined stream type. 

Each stream should have the following associated functions (methods): 

int getc(ohandle stream) Returns the next character in stream. 

int ungetc(int c, ohandle stream)  

 Put back character c in stream. 

int feof(ohandle stream) Return TRUE if end-of-file reached. 

int putc(int c, ohandle stream)  

 Write character c to the stream 

Int readbytes(ohandle stream, void *block, unsigned int len) 

 Read a block of data from the stream. The slower putc method is used if 

this method is NULL. 

int writebytes(ohandle stream, void *block, unsigned int len) 

 Write a block of data to the stream. The slower getc method is used if this 

method is NULL. 

int fflush(ohandle stream) Flush stream buffer contents. 

int fclose(ohandle stream) Close the stream. 

Once these methods are defined and registered the user can use the following generic stream 

functions to manipulate the new stream: 

int a_getc(ohandle stream);                      Read one character 

int a_ungetc(int c, ohandle stream);             Unread one character 

int a_puts(char *str,ohandle stream);            Write string  

int a_writebytes(ohandle stream, void *buff, unsigned int len); 

                                                 Write block  

int a_putc(int c, ohandle stream);               Write a character 

int a_puti(LONGINT i, ohandle stream);           Write an integer 

int a_putr(double i, ohandle stream);            Write a real number 

int a_readbytes(ohandle stream, void *buff, unsigned int len); 

                                                 Read block 

int a_fclose(ohandle stream);                    Close stream 

int a_feof(ohandle stream);                      Test for end-of-file 

int a_fflush(ohandle stream);                    Flush stream buffer 

 

The performance of stream management can be substantially improved by moving bulks of data 

to or from the stream through calls to a_printbytes() and a_readbytes(). If the 

corresponding methods are not registered with a stream, writing to and reading from the stream is 

slower since it will be done byte-by-byte.    



1.7.1. Marshalling objects 

Streams are usually used for writing object in such a format that they can later be restored by 

reading. This is particularly important when using streams to communicate data between sa.engine 

peers, e.g. using sockets. The function a_printobj(handle h, handle str) writes the 

physical object h on a stream str in such a format (S-expression) that a copy of the object is 

allocated when the function a_read(handle str) reads the object from the same stream. 

Thus a_printobj() and a_read() are sa.Storage’s generic (de-)marshalling functions. They use 

Lisp’s S-expressions to provide standardized marshalling and demarshalling for the built-in 

storage types. Customized (de-)marshalling should be specified for user defined storage type, as 

will be described below.    

In C the following functions can be used for (de-)marshalling S-expressions:  

ohandle a_read(ohandle stream)  

 Read (unmarshal) S-expression from a stream. This corresponds to the 

Lisp function READ. 

ohandle a_print(ohandle s) Print S-expression a followed by a line feed on stdoutstream, normally 

for debugging.  

ohandle a_printobj(ohandle s, ohandle stream) 

 Print S-expression s followed by a line feed as delimiter on stream. This 

corresponds to the Lisp function PRINT.  

ohandle a_prin1(ohandle s, ohandle stream, int princflg) 

 Print S-expression s on stream. If princflg is FALSE the printout be 

marshalled using the escape character \ when necessary to allow for 

subsequent reading; if princflg is TRUE object will be written without 

escapes and cannot be read using a_read. Notice that, since no delimiter 

is inserted as with a_printobj(), it is up to the user to ensure proper 

object delimitation. 

ohandle a_terpri(ohandle stream)  

 Write a line feed on the stream. 

2. Interfacing Lisp with C 

An aLisp function can be implemented as a C function and C functions can call aLisp functions. 

aLisp and C can also share data structures without data copying or transformations. The error 

management in aLisp and sa.engine can be utilized in C for uniform and efficient error 

management.  

In order to interface aLisp with C/C++ you must include the file sa_lisp.h in your C program. 

This section describes how to call C functions from aLisp, and how to call aLisp functions from 

C. 



2.1. Calling C from Lisp 

As a very simple example of an external Lisp function we define an aLisp function HELLO which 

prints the string ‘Hello world’ on standard output. It has the C implementation: 

#include "sa_lisp.h" 

ohandle hellofn(bindtype env) 

{ 

   printf("Hello world\n"); 

   return nil; 

} 

The include file sa_lisp.h contains all necessary declarations for implementing external Lisp 

functions in C. External Lisp function definitions must always return handles of type ohandle. 

Do not forget the return statement, otherwise the system might crash! 

In order to be called from Lisp, an external Lisp function implementation has to be registered with 

a symbolic aLisp name, in this case the symbol HELLO, by calling: 

extfunction0("hello",hellofn); 

A system convention is that an external Lisp function named XXX is named xxxfn in C, as for 

HELLO.  

The call to register an external Lisp function can be done in a main C program, the driver program, 

after the system has been initialized after sa_engine_init(argc, argv)is called, or after 

a DLL or shared object library is loaded dynamically. The following driver program initializes the 

system, registers HELLO, and calls the aLisp read-eval-print loop (REPL) with prompter string 

‘Lisp>’. 

#include "sa_lisp.h" 

 

ohandle hellofn(bindtype env) 

{ 

   printf("Hello world\n"); 

   return nil; 

} 

 

void main(int argc, char **argc) 

{ 

   sa_engine_init(argc,argv); 

   extfunction0("hello", hellofn); 

   evalloop("Lisp>"); 

} 

When the above program is run the user can call HELLO from the REPL by typing 

(hello) 

 

Foreign Lisp functions can also be defined when loading C plugins (DLLs or shared objects) to 

sa.engine or sa.core se documention of plug-ins in C.  



2.1.1. Defining foreign Lisp functions in C 

Lisp functions can be implemented as foreign Lisp functions in C. A foreign Lisp function fn() 

with arguments x1, x2,..., xn must have the following signature in C:  

ohandle fn(bindtype env,ohandle x1,ohandle x2,..,ohandle xn)  

The first argument env is a binding environment used by the system for error handling, memory 

management, and other things. 

For example, the following function implements a foreign Lisp function to add two numbers:  

ohandle addfn(bindtype env, ohandle x, ohandle y)  

{ 

   int ix, iy, r; // will hold integer values of x, y and result 

 

     // Dereference x into ix and raise 

     // an error if x is not an integer: 

   IntoInteger(x,ix,env); 

     // This will not be executed if x is not an integer  

   IntoInteger(y,iy,env); 

     // Both x and y must be integers for this to execute  

   r = ix + iy;  

   return mkinteger(r);// Return a new physical integer object 

}  

addfn is registered with 

exfunction2("add",addfn); 

The number ’2’ after ’extfunction’ indicates that this foreign function takes two arguments. 

Foreign Lisp functions should always check the legality of the handles they receive, otherwise the 

system may crash. To check that a handle h is of an expected storage type (i.e. Lisp type) use the 

C macro: 

OfType(h,tpe,env)  

A standard error will be generated if h does not have the storage type tag tpe. For integers the 

above used macro IntoInteger(h, i, env) is a convenient alternative to OfType. It 

safely dereferences handle h to integer i.  

External Lisp functions are registered (assigned to Lisp symbols) by calling a system C function: 

extfunctionX(char *name, Cfunction cfn); 

Where name is the Lisp name of the foreign function and cfn is a pointer to its implementation 

in C. 

Different versions of extfunctionX() are available depending on the arity X of the external 



Lisp function. For example, 

extfunction2("add",addfn); 

There are corresponding registration functions for foreign functions with arity 0, 1, 2, 3, 4, 5 named 

extfunction0(), extfunction1(), etc. 

When a physical object handle whose reference counter has been managed by a_setf() is to be 

returned from a C-function the following C-macro should be used: 

a_return(h); 

a_return(h) returns h from the C-function after the reference counter of h has been decreased 

without deallocating h if the counter reaches 0.  

For example, the following external Lisp function calls addfn() twice to sum three integers: 

ohandle add3fn(bindtype env, ohandle x, ohandle y, ohandle z) 

{ 

   ohandle s=nil; 

 

   a_setf(s,addfn(env,x,y)); 

   a_setf(s,addfn(env,s,z)); 

   a_return(s); 

} 

The variable s holds the result from add3fn().  

If s instead had been returned by the C statement 

   return s; 

the result object would never be released from the location s since the reference counter would 

not have been decreased, and there would be a memory leak.  

The following function reverses a list: 

ohandle myreversefn(bindtype env, ohandle l) 

{ 

   ohandle lst=nil, res=nil; 

 

 a_setf(lst,l); 

   while(listp(lst))  

 { 

      a_setf(res,cons(hd(lst),res)); 

      a_setf(lst,tl(lst)); 

   } 

 a_free(lst); 

   a_return(res); 

} 



Register myreverse with: 

extfunction1("myreverse", myreversefn); 

WARNING: You cannot assign C function parameters (such as l in the example) with 

a_setf(l,..) or release them with a_free(l), since C function parameters are not 

reference counted.  Instead the parameter l is assigned to the local variable lst in order to 

subsequently use a_setf().  

WARNING: The C implementation of a foreign Lisp function must always return a legal handle, 

otherwise the system might crash. It is therefore recommended to run the system in ’debug mode’ 

(by calling (debugging t)) while testing external Lisp function so that the system checks the 

legality of data passed between Lisp and C.  

2.1.2. Variadic foreign Lisp functions 

Variadic external functions accept any number of arguments. Foreign Lisp functions with more 

than six arguments need to be defined as variadic functions. Variadic foreign Lisp functions have 

the signature: 

ohandle fn(bindtype args, bindtype env)  

where env is the binding environment for raising errors, and args is a binding environment 

representing the actual arguments of the function call. To access argument number i use the C 

macro: 

nthargval(args,i)  

The arguments are enumerated from 1 and up.  

The C function 

int envarity(bindenv args)  

returns the actual arity of the function call. 

For example, the following Lisp function sumfn() adds an arbitrary number of integer 

arguments:  

ohandle sumfn(bindtype args,bindtype env) 

{ 

   LONGINT sum=0; 

   int arity=envarity(args), i, v; 

 

   for(i=1;i<=arity;i++)  

 { 

      IntoInteger(nthargval(args,i),v,env); 

      sum = sum + v; 

   } 



   return mkinteger(sum); 

}  

Variable arity functions are the registered to the system with extfunctionn(): 

extfunctionn("SUM",sumfn);  

The Lisp function LIST has the following implementation: 

ohandle listfn(bindtype args,bindtype env) 

{ 

  ohandle res=nil; 

  int arity=envarity(args), i; 

 

  for(i=arity;i>=1;i--)  

  { 

     a_setf(res,cons(nthargval(args,i),res)); 

  } 

  a_return(res); 

} 

Notice how the iteration over the arguments is done in reverse order to get the correct list element 

order. 

2.1.3. Defining special forms 

Special forms are external Lisp functions whose arguments are not evaluated by the aLisp 

interpreter when the C implementation function is called. 

C functions implementing special forms have the signature: 

ohandle fn(bindtype args,bindtype env)  

Analogous to variadic foreign functions the macros envarity() and nthargval() can be 

used to investigate the actual arguments. The difference is that nthargval() here returns the 

unevaluated value, unlike for variadic functions where evaluated values are returned. 

For example, the following C function implements the Lisp special form quote: 

ohandle myquotefn(bindtype args, bindtype env)  

{  

    return nthargval(args,1);  

}  

Special forms are registered using  extfunctionq(): 

extfunctionq("myquote",myquotefn);  

For evaluating unevaluated forms this system function can be used: 

ohandle evalfn(bindtype env, ohandle form) 



For example, the following C function implements the special form (mywhile pred form1 

form2 ...) that iteratively executes form1 etc. while pred is non-nil: 

ohandle mywhilefn(bindtype args, bindtype env) 

{ 

   ohandle cond=nil, v=nil; 

   int arity = envarity(args), i; 

 

   a_setf(cond, nthargval(args,1)); 

   for(;;)  

 { 

    a_setf(v, evalfn(env,cond)); /* Evaluate condition */ 

       if(v == nil)  

  {  /* Condition false */ 

          a_free(v); /* Release v and cond before returning */ 

          a_free(cond); 

          return nil; 

  } 

       for(i=2; i<=arity; i++)  

  { 

          a_setf(v, evalfn(env, nthargval(args,i))); 

     } 

   } 

} 

Notice that v and cond must be released before the function is exited. Furthermore, the above 

definition is not fully correct, since if evalfn() fails because of some logical error in the 

evaluated form, an error will be thrown which will make evalfn() abort. Thus, in case of an 

error in the evaluation, the storage referenced by v and cond will never be deallocated. Another 

version of mywhile() which also manages this memory deallocation correctly will be presented 

in the next section. 

2.2. Error management in C 

sa.engine has its own error management system integrated with the storage manager. In order for 

the storage manager to correctly release data after failures, abnormal function exits should always 

use the system error management, rather than directly calling C or C++ error management.  

2.2.1. Unwind Protection 

To unconditionally catch failed operation the unwind protect mechanism is used. This is often 

necessary to guarantee that certain actions are performed even if some called function terminates 

abnormally. For example, space may need to be deallocated or files be closed. For this purpose the 

system provides an unwind-protect feature in C, similar to what is provided in Lisp. Unwind 

protection is provided through the following three macros: 

 unwind_protect_begin;  /* New unwind-protected block */  

     main code   



 unwind_protect_catch;  /* This statement MUST ALWAYS be executed */  

     unwind code   
 unwind_protect_end;   /* Will handle thrown exceptions */  

The main code is the code to be unwind protected. The unwind code is always executed both if the 

main code fails or succeeds. In the unwind code, a flag, unwind_reset, is set to TRUE if the 

code is executed as the result of an exception. The unwind code is executed outside the scope of 

the current unwind protection. Thus, exceptions occurring during the execution of the unwind code 

is thrown to the next higher unwind protection. 

Notice that he unwind_protect_catch code must be executed; never return directly out of 

the main code block.  

Notice that omitting unwind_protect_end will cause a compiler warning, so that if you want 

to catch all exceptions use unwind_protect_cancel instead of unwind_protect_end. 

For example, a correct version of mywhile that releases memory also in case of an error in the 

evaluation can be defined as follows: 

ohandle mywhilefn(bindtype args, bindtype env) 

{ 

   volatile ohandle cond=nil, v=nil; 

   int arity = envarity(args), i; 

 

   unwind_protect_begin 

   a_setf(cond, nthargval(args,1)); 

   for(;;)  

 { 

    a_setf(v,evalfn(env,cond)); // Evaluate condition 

         if(v == nil)  // Condition false => exit for loop 

            break; 

         for(i=2; i<=arity; i++)  

  { 

          a_setf(v,evalfn(env,nthargval(args,i))); 

         } 

   } 

   unwind_protect_catch; 

   a_free(v); // Release v and cond before exiting function 

   a_free(cond); 

   unwind_protect_end; 

   return nil;// This statement is not executed in case of an error 

} 

Notice that some compilers (e.g. gcc) may not restore local variables correctly when an exception 

has occurred unless they are defined as volatile.  



2.2.2. Throwing errors. 

Every kind of error has an error number and an associated error message. There are predefined 

error numbers for common errors defined in sa_storage.h. To throw an sa.engine error 

condition use the system function: 

ohandle a_throw_errorno(bindtype env, int no, ohandle form);  

 

no    is the error number. 

form  is the failed expression. 

env   is the binding  environment for the error. 

For example, the following code implements the Lisp function CAR: 

ohandle mycarfn(bindtype env, ohandle x) 

{ 

  if(x==nil) return nil; // (car nil) = nil 

  if(a_datatype(x) != LISTTYPE)  

   return a_throw_errorno(env,ARG_NOT_LIST, x); 

  return hd(x); 

} 

Alternatively error messages rather than error number can be thrown by calling the function: 

ohandle a_throw_errormsg(bindtype env, const char *msg, ohandle form); 

The following is equivalent to the above call to a_throw_errorno(): 

 a_throw_errormsg(env, "Not a list", x); 

Error messages are truncated to max 100 bytes. 

A few convenience macros for common error checks are defined in sa_storage.h: 

OfType(h,tpe,env)        Raise a standard error if h is not of type tpe. 

IntoString(h,into,env)  Set the variable into (declared char* into) to a copy 

of the text of a symbol or string object h. The copy is 

pushed on the C stack and automatically freed when the C 

function is exited. 

IntoInteger(h,into,env)   Convert numeric object h into C LONGINT integer. 

IntoInteger32(h,into,env) Convert numeric object h into C int. 

IntoDouble(h,into,env)    Convert numeric object h into C double. 

To register a new error to the system use: 

int a_register_error(char *msg); 

a_register_error(msg) gets a unique error number no for the error string msg to be used 

in a_throw_errorno(env,no,x). If msg has been registered before its previous error 

number is returned. Some error numbers (such as ARG_NOT_LIST) are defined as macros in 



sa_storage.h. The system handles dynamic error messages passed to 

sa_throw_errormsg() by assigning them the error number -1. 

2.3. Calling Lisp from C 

Lisp functions can be called from C by using the following C function: 

ohandle call_lisp(ohandle lfn, bindtype env, int arity,  

                  ohandle a1, ohandle a2,...)  

 

lfn       is the Lisp function to call. 

env       is the error binding environment. 

arity     is the arity of the call. 

a1,a2,... are the actual arguments of the call. 

For example, the following code implements a Lisp function (mymap l fn) that applies  Lisp 

function fn on each element in list l: 

ohandle mymapfn(bindtype env, ohandle l, ohandle fn) 

{ 

   ohandle res=nil, lst=nil; 

 

   unwind_protect_begin; 

   a_setf(lst,l); 

   while(listp(lst))  

 { 

       a_setf(res,call_lisp(fn,env,1,hd(lst))); 

       a_setf(lst,tl(lst)); 

   } 

   unwind_protect_catch; 

   a_free(res); 

   a_free(lst); 

   unwind_protect_end; 

   return nil; 

} 

Notice that the called  Lisp function might allocate new data objects and these have to be freed 

correctly by assigning res using a_setf() and always releasing res when the function is 

exited. 

Notice also that unwind protection has to be used here to guarantee that the temporary memory 

locations are always released even if the call to fn() causes an error exception. 

The use of symbols is convenient for calling named Lisp functions from C. For example, the 

following function prints each element in a list: 

ohandle mapprintfn(bindtype env, ohandle l) 

{ 

   ohandle printsymbol=nil, lst=nil; 



 

 printsymbol = mksymbol("print"); 

   unwind_protect_begin;    

   a_setf(lst,l); 

   while(listp(lst))  

 { 

      call_lisp(printsymbol,env,1,hd(lst)); 

      a_setf(lst,tl(lst)); 

   } 

   unwind_protect_catch; 

 a_free(lst);  // in case printsymbol fails 

 unwind_protect_end; 

   return nil; 

} 

Notice that symbols like print are permanent and when a symbol is referenced from a location 

it need not be reference counted as in the assignment of printsymbol above. Also the call to 

print is guaranteed to not generate any new objects and need not be released. 

To call Lisp functions with variable arity use: 

ohandle apply_lisp(ohandle fn, bindtype env, int arity, ohandle args[]);  

The difference to call_lisp() is that the arguments are passed in the array args.  

To evaluate a C string of Lisp forms use: 

ohandle eval_forms(bindtype env, char *forms); 

All forms in forms are evaluated. The value of the last evaluation is returned as value. Don’t 

forget to release the result. 

2.3.1. Direct C calls 

If the name of a C function implementing an Lisp function is known, it is more efficient to directly 

call the C function than to use call_lisp(). However, arguments and results of such direct C 

calls must be handled carefully to avoid storage leaks, since the automatic deallocation of 

temporary storage is not performed with direct C function calls. For example, the following 

correctly defined external Lisp function prints ‘hello world’ by directly calling the Lisp function 

print: 

ohandle hellofn(bindtype env) 

{ 

   ohandle msg=nil; 

 

   a_setf(msg, mkstring("Hello world")); 

   printfn(env, msg, nil); // PRINT has two arguments 

   a_free(msg); 

   return nil; 

} 



By contrast, the following incorrect implementation would cause a storage leak because the ‘hello 

world’ string is not deallocated: 

ohandle hellofn(bindtype env) 

{ 

   printfn(env, mkstring("Hello world"), nil); 

   return nil; 

}  

Notice that call_lisp() automatically garbage collects its arguments upon return; thus 

temporary objects among the arguments are automatically freed. For example, the following 

definition of myhello() would be correct but slower than the previous implementation: 

ohandle hellofn(bindtype env) 

{ 

   call_lisp(mksymbol("print"), 2, env, mkstring("Hello world"), nil); 

   return nil; 

} 

2.4. C functions for debugging 

There are a number of function useful for debugging C programs calling the sa.engine kernel. The 

most useful one is a_print that prints the S-expression representation of the objects referenced 

by handle h: 

ohandle a_print(ohandle h) 

 

You can also print using the OSQL format of h with: 
int sa_print(ohandle h) 

It returns an error code if h cannot be printed. 

2.4.1. Tracing storage leaks 

When defining a new storage type it is important to make sure that object allocation and 

deallocation work OK. Therefore, there is a facility in the OSQL and aLisp REPLs to trace how 

many objects are allocated, or deallocated, respectively. Turn on that facility by evaluating the 

Lisp form 

(allocstat t) 

The system will then make a report of how many objects have been (de)allocated for each storage 

type. Make sure that the same number of objects is deallocated and allocated if that is expected.  

Notice that logged objects are not deallocated until commit or rollback is called. Therefore, 

you should turn off logging before tracing storage leaks by the command: 

logging off; 

Notice that the first time a Lisp call is made there may be just-in-time macro expansions and caches 



that make the storage count balancing not match. Thus you should make one or two extra calls to 

“warm up” the system before tracing storage leaks. 

Notice that object references might be saved in the database log and therefore you should rollback 

database updates when necessary to get the balance between allocated and deallocated objects. 

Turn off storage usage tracing with the Lisp call: 

(allocstat nil) 

The C the function  

a_allocstat(int clear)  

does the same as allocstat. If the flag clear is TRUE the statistics is cleared without printing 

a report.  

Notice that you normally have to “warm up” the system before using a_allocstat().  

If you have a leak that caused the image to grow continuously, you can trace what functions were 

called by calling the Lisp function: 

(trace-expand flag depth) 

If flag is true, it makes a Lisp function backtrace every time the high watermark of the database 

image is expanded. The depth of the backtrace is specified with depth. In this way you may get 

to know where the objects for a storage leak are allocated. 

You can trace what Lisp functions were called when creating an object that was NOT deallocated 

during an evaluation by first calling: 

(storage-trace flag depth) 

Then do your evaluation and print backtraces of the Lisp functions allocating objects remaining 

after the evaluation by calling:  

(print-storage-trace &optional file) 

The reference counter of a physical storage object referenced by a handle h is obtained with: 

int refcnt(ohandle h)  

When the reference counter of the object referenced by h is changed to 0 the garbage collector will 

call the finalizer of the object and mark it as deallocated by setting the reference counter to 

DEALLOCREF.  

The following trapper calls the C function trapper when the object referenced by handle h is 

deallocated: 

void a_trap_dealloc(ohandle h, void(*trapper)(ohandle)) 



2.4.2. Checking validity of handles 

A common bug is that some handle is not properly initialized or that its memory has been 

overwritten. You can check the validity of a handle h by calling: 

int illegal_handle(ohandle h, int circular_depth) 

If the second argument is positive, illegal_handle() also tests whether h references a 

circular list structure down to the specified depth from h. 

If the function returns a non-zero value it is an error code no that indicates how h is corrupted. 

The corresponding error message can be retrieved by calling:  

char *a_errormessage(int no)  

2.4.3. Trapping memory corruption 

When adding C-code to the system it may happen that the database image accidently becomes 

corrupted, meaning that some handle references some illegal location. If all the conventions for 

writing C-code are not systematically followed errors typically occur in a completely different 

place of the system. For that reason one would like to know where in the C-code the memory is 

destroyed.  

The C-macro 

CI; 

checks if the image is corrupted. If that is the case the system will print on what C source code line 

the corruption is detected along with a small explanation. Add calls to CI in the C-code where you 

suspect memory corruption occurs.  

You can make the sa.engine interpreters continuously call CI by calling: 

a_system_trust (0) 

When the argument of a_system_trust is 0 the sa.engine kernel will continuously call CI. 

Calling a_system_trust (0) will signal memory corruptions in general with a significant 

performance overhead. The function has the signature: 

int a_system_trust(int level) 

It returns the old trust level. To just get the current trust level, call a_system_trust(-1). The 

corresponding Lisp function is: 

(system-trust level) 

When calling system-trust from lisp the level is also saved in the image making it persistent, 

while the trust level of a_system_trust is not saved when the image is saved. 



When the system finds a corrupted memory location in the image it will print an error message: 

Memory corruption in location 134000 (= 12345) 

The two numbers 134000 and 12345 indicate that memory location denoted by handle (ohandle) 

134000 is corrupt and points to a word containing the integer 12345. To trap this when it actually 

happens can be done by calling the function 

 a_setdemon(ohandle loc, int val) 

for example 

 a_set_demon(134000, 12345); 

It causes the aLisp interpreter to continuously check if loc is equal to val. Whenever loc becomes 

equal to val an error is raised and the demon is turned off.  

2.5. Interrupt handling 

The interrupt handling system is managed by the Lisp function (catchinterrupt). This 

function is called whenever an interrupt has occurred. It either prints a message or catches the 

interrupt. The C macro CheckInterrupt checks if an error has occurred and calls 

catchinterrupt if that is the case. 

An interrupt is indicated to the system when the global C variable InterruptHasOccurred 

is set to TRUE. The macro CheckInterrupt is called after every Lisp function call. If you write 

long-running C code you should insert calls to CheckInterrupt to allow interrupts to be 

managed. 

If interrupt signal signo is raised in your C-program under Unix it will be caught if you 

beforehand have called:  

(sig-bt signo) 

Then the system will automatically print a backtrace of the C call stack and then abend. By default 

(sig-bt 11) is turned on under Unix to trap memory corruption. 

For interactive trapping of signals you can call the function: 

(sig-trap signo) 

It will enter a special Lisp REPL when signal signo is raised. This REPL is not a regular Lisp 

break loop as in Section 7.1 of [1] since there are no break commands. Instead you can explicitly 

make a C backtrace by calling (c-backtrace) and a corresponding Lisp backtrace by calling 

(backtrace). The current thread identifier is obtained with (thread-id). To exit the REPL 

call the function (exit). Call (quit-now rc) to abend sa.engine with return code rc. 
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